\(y=\frac{2x-1}{x-1}\left(C\right)\). Viết phương trình tiếp tuyến 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

Tập xác định : \(D=R\backslash\left\{1\right\}\)

Ta có \(y'=\frac{-1}{\left(x-1\right)^2}\)

Gọi \(M\left(x_o;y_0\right)\) là tiếp điểm

a) Ta có \(y_0=0\Rightarrow x_0=\frac{1}{2}\Rightarrow y'\left(x_0\right)=-4\)

Phương trình tiếp tuyến là : \(y=-4x+2\)

b) Phương trình hoành độ giao điểm của d và (C) :

\(\frac{2x-1}{x-1}=x+1\Leftrightarrow x^2-2x=0\Leftrightarrow x=0;x=2\)

\(x_0=0\Rightarrow\) phương trình tiếp tuyến là : \(y=-x\left(x-0\right)+1=-x+1\)

\(x_0=2\Rightarrow\) phương trình tiếp tuyến là : \(y=-x+5\)

c) Ta có phương trình của đường thẳng \(\Delta:y-\frac{2x_0-1}{x_0-1}=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)\)

hay \(\Delta:\frac{1}{\left(x_0-1\right)^2}x+y-\frac{x_0}{\left(x_0-1\right)^2}-\frac{2x_0-1}{x_0-1}=0\)

Ta có : \(d\left(I;\Delta\right)=\frac{\left|\frac{2}{x_0-1}\right|}{\sqrt{\frac{1}{\left(x_0-1\right)^4}+1}}\le\sqrt{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left(x_0-1\right)^4=1\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=2\end{array}\right.\)

Suy ra có 2 tiếp tuyến là : \(\Delta_1:y=-x+1\)

                                      \(\Delta_2:y=-x+5\)

d) Ta có  : \(\Delta Ox=A\left(2x^2_0-2x_0+1;0\right)\)

                \(OA=1\Leftrightarrow\left|2x^2_0-2x_0+1\right|=1\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=1\end{array}\right.\)

Suy ra phương trình tiếp tuyến là : \(y=-x+1\)

19 tháng 4 2016

Giao điểm của đồ thị hàm số (C) và trục tung là điểm N(0;1)

Ta có : \(f'\left(x\right)=\frac{3}{\left(1-x\right)^2}\) suy ra tiếp tuyến  tại điểm N là \(\left(\Delta\right):y=3x+1\Leftrightarrow\left(\Delta\right):3x-y+1=0\)

Xét điểm \(M\left(a+1;\frac{2a+3}{-a}\right)\in\left(C\right),a>0\)

Ta có : \(d_{M\\Delta }=\frac{\left|3\left(a+1\right)+\frac{2a+3}{a}+1\right|}{\sqrt{10}}=\frac{1}{\sqrt{10}}.\frac{3a^2+6a}{+3a}=\frac{3}{\sqrt{10}}\left(a+\frac{2}{a}+1\right)\ge\frac{3}{\sqrt{10}}\left(2\sqrt{2}+1\right)\)

Dấu bằng xảy ra khi \(a=\frac{2}{a}\Leftrightarrow a=\sqrt{2}\Rightarrow M\left(\sqrt{2}+1;\frac{2\sqrt{2}+5}{-\sqrt{2}}\right)\)

26 tháng 4 2016

Ta có : \(y'=\frac{-m-3}{\left(x-1\right)^2}\)

a) Vì \(x_0=0\Rightarrow y_0=-m-1;y'\left(x_0\right)=-m-3\)

Phương trình tiếp tuyến d của \(\left(C_m\right)\) tại điểm có hoành độ \(x_0=0\) là :

\(y=\left(-m-3\right)x-m-1\)

Tiếp tuyến đi qua \(A\) khi và chỉ khi \(3=\left(-m-3\right)4-m-1\Leftrightarrow m=-\frac{16}{5}\)

b) Ta có : \(x_0=2\Rightarrow y_0=m+5;y'\left(x_0\right)=-m-3\)

Phương trình tiếp tuyến \(\Delta\) của \(\left(C_m\right)\) tại điểm có hoành độ \(x_0=2\) là :

\(y=\left(-m-3\right)\left(x-2\right)+m+5=\left(-m-3\right)x+3m+11\)

\(\Delta\cap Ox=A\Rightarrow A\left(\frac{3m+11}{m+3};0\right)\) với \(m+3\ne0\)

\(\Delta\cap Oy=B\Rightarrow B\left(0;3m+11\right)\)

Suy ra diện tích tam giác OAB là : \(S=\frac{1}{2}OA.OB=\frac{1}{2}\frac{\left(3m+11\right)^2}{\left|m+3\right|}\)

Theo giả thiết bài toán suy ra \(\frac{1}{2}\frac{\left(3m+11\right)^2}{\left|m+3\right|}=\frac{25}{2}\)

\(\Leftrightarrow\left(3m+11\right)^2=25\left|m+3\right|\Leftrightarrow\)\(\left[\begin{array}{nghiempt}9m^2+66m+121=25m+75\\9m^2+66m+121=-25m-75\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}9m^2+41m+46=0\\9m^2+91m+196=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}m=-2;m=-\frac{23}{9}\\m=-7;m=-\frac{28}{9}\end{array}\right.\)

 
 

 

27 tháng 4 2016

Ta có \(y'=4x^3-16x\)

Vì \(x_0=1\Rightarrow y_0=m-6;y'\left(x_0\right)=-12\)

Phương trình tiếp tuyến d của \(\left(C_m\right)\) tại điểm có hoành độ \(x_0=1\) là :

\(y=-12\left(x-1\right)+m-6=-12x+m+6\)

Phương trình hoành độ giao điểm của  \(\left(C_m\right)\) với d :

\(x^4-8x^2+m+1=-12x+m+6\Leftrightarrow x^4-8x^2+12-5=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x-5\right)=0\Leftrightarrow x=1,x=-1\pm\sqrt{6}\)

Vậy d và  \(\left(C_m\right)\) luôn cắt nhay tại 3 điểm 

\(A\left(1;m-6\right);B\left(-1\pm\sqrt{6};m+18\ne\sqrt{6}\right)\)

 
29 tháng 4 2016

a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)

Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu

\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)

Vậy \(0< m< 3\) là giá trị cần tìm

b) Khi m = 1 ta có : \(y=x^3-2x\)

Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)

Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)

Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)

Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)

                           \(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)

                \(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)          \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)

Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)

 

27 tháng 4 2016

Tập xác định \(D=R\backslash\left\{2-m\right\}\)

Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)

a) Tiếp tuyến tại điểm có hoành độ x = 1 song song với đường thẳng :

\(y=x+1\) khi \(y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(x+m-2\right)^2}=-1\Leftrightarrow m=0;m=2\)

* Với m = 0 ta có phương trình tiếp tuyến \(y=-\left(x-1\right)-1=-x\)

* Với m = 2 ta có phương trình tiếp tuyến \(y=-\left(x-2\right)+3=-x+5\)

Vậy m = 0 là giá trị cần tìm

 

b) G\(m\ge1+\sqrt{2};m\le1-\sqrt{2}\)ọi \(M\left(x_0;y_0\right)\) là tiếp điểm. Ta có \(y'\left(x_0\right)=-\frac{1}{2}\)

\(\frac{m^2-2m-1}{\left(x_0+m-2\right)^2}=-\frac{1}{2}\) (*)

Yêu cầu bài toán suy ra (*) vô nghiệm, điều đó xảy ra khi :

\(m^2-2m-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}m\ge1+\sqrt{2}\\m\le1-\sqrt{2}\end{array}\right.\)

Vậy giá trị cần tìm là \(m\le1-\sqrt{2};m\ge1+\sqrt{2}\)

3 tháng 5 2016

Với m = 1, ta có \(\left(C_1\right):y=\frac{x+1}{x-1}\)

a. Gọi d là đường thẳng đi qua P, có hệ số góc k => \(d:y=k\left(x-3\right)+1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-3\right)+1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-3\right)+1\Leftrightarrow x=2\)

\(\Rightarrow k=-2\Rightarrow\) phương trình tiếp tuyến : \(y=-2x+7\)

 

b. Gọi d là đường thẳng đi qua A, có hệ số góc k : \(d:y=k\left(x-2\right)-1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-2\right)-1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-2\right)-1\Leftrightarrow x=\pm\sqrt{2}\)

\(x=\sqrt{2}\Rightarrow k=-2\left(3+2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3+2\sqrt{2}\right)x+11+8\sqrt{2}\)

\(x=-\sqrt{2}\Rightarrow k=-2\left(3-2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3-2\sqrt{2}\right)x+11-8\sqrt{2}\)

 
c. Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)
Tiếp tuyến tại điểm có hoành độ x = 1 vuông góc với đường thẳng
\(y=x+1\Leftrightarrow y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(m-1\right)^2}=-1\)
\(\Leftrightarrow m=0;m=2\)
 

 

 

 

27 tháng 4 2016

Tập xác định : \(D=R\)

Gọi tiếp điểm là \(M\left(x_0;y_0\right);y'=-4x^3-x\)

Hệ số gọc của \(\Delta\) là \(k=y'\left(x_0\right)\)

a) Vì  \(\Delta\perp d\)  nên \(\frac{1}{5}.k=-1\Leftrightarrow k=-5\Leftrightarrow-4x^3_0-x_0=-5\Leftrightarrow x_0=1\)

\(x_0=1\Rightarrow y\left(x_0\right)=\frac{9}{2}\Rightarrow\Delta:y=-5\left(x-1\right)+\frac{9}{2}\Leftrightarrow\Delta:y=-5x+\frac{19}{2}\)

Vậy tiếp tuyến vuông góc với d của (C) là \(\Delta:y=-5x+\frac{19}{2}\)

b) Phân giác của 2 đường \(d_1;d_2\) là :

\(\frac{\left|2x-y+2\right|}{\sqrt{5}}=\frac{\left|x-2y+3\right|}{\sqrt{5}}\Leftrightarrow\left[\begin{array}{nghiempt}y=-x+1\\y=x+\frac{5}{3}\end{array}\right.\)

Từ giả thiết suy ra \(\Delta\)  vuông góc với các đường phân giác của  \(d_1;d_2\) nên hệ số góc của \(\Delta\) là \(\pm1\) ( \(\Delta\)  không đi qua giao điểm của   \(d_1;d_2\))

* Trường hợp 1: Với k = 1 ta có \(-4x_0^3-x_0=1\Leftrightarrow x_0=-\frac{1}{2}\Rightarrow y_0=\frac{93}{16}\)

                        Suy ra \(\Delta:y-\frac{93}{16}=x+\frac{1}{2}\) hay \(y=x+\frac{101}{16}\)

* Trường hợp 2: Với k = -1 ta có \(-4x_0^3-4x_0=-1\Leftrightarrow x_0=\frac{1}{2}\)

                        Suy ra \(\Delta:y-\frac{93}{16}=x-\frac{1}{2}\) hay \(y=x+\frac{85}{16}\)

 

 

 
 
 
29 tháng 4 2016

Gọi \(M\left(x_0;2x^3_0+3x^2_0-12x_0-1\right)\) là tiếp điểm

\(\Delta:y=\left(6x^2_0+6x_0-12\right)\left(x-x_0\right)+2x^3_0+3x^2_0-12x_0-1\)

Vì \(O\in\Delta\) nên \(0=\left(6x^2_0+6x_0-12\right)\left(-x_0\right)+2x^3_0+3x^2_0-12x_0-1\)

                        \(\Leftrightarrow4x^3_0+3x^2_0+1\Leftrightarrow x_0=-1\Rightarrow y_0=12;y'\left(x_0\right)=-12\)

Vậy \(\Delta:y=-12x\)

                      

NV
12 tháng 4 2019

Bài này chỉ nên làm theo kiểu trắc nghiệm, không bao giờ nên giải tự luận vì theo mình thì nó quá là trâu :(

Trắc nghiệm thì ta có sẵn 4 mặt phẳng rồi, gọi mặt phẳng đó là (P) thì \(AB\perp\left(P\right)\Rightarrow AM\perp\left(P\right)\Rightarrow\) phương trình \(\Delta'\) chính là phương trình đường thẳng qua M và \(\perp\left(P\right)\Rightarrow\) nhận vtpt của (P) là 1 vtcp \(\Rightarrow\) dễ dàng viết được 4 pt đường thẳng \(\Delta'\) chỉ sau 5s

Đường thẳng này trước hết phải cắt \(\Delta\) nên ta tìm giao điểm của \(\Delta'\)\(\Delta\), pt nào ko cho giao điểm \(\Rightarrow\) loại ngay, nếu có giao điểm thì tìm tiếp giao điểm của \(\Delta'\) với mặt cầu và xem hoành độ có nguyên ko, nguyên \(\Rightarrow\) kiểm tra tỉ lệ khoảng cách, ko nguyên \(\Rightarrow\) loại.

Còn tự luận thì ý tưởng của mình thế này, nhưng chắc phải làm cả tiếng đồng hồ mất:

Chia làm 2 trường hợp: \(\overrightarrow{AB}=3\overrightarrow{AM}\)\(\overrightarrow{AB}=-3\overrightarrow{AM}\), nếu hên sẽ đúng luôn ngay từ trường hợp đầu tiên :D

Gọi \(A\left(a+3;-a-1;a-2\right)\Rightarrow\) từ tỉ lệ vecto suy ra tọa độ B có 3 yếu tố phụ thuộc vào \(a\), thay tọa độ đó vào pt mặt cầu \(\Rightarrow\) cái nào có hoành độ nguyên thì nhận

- Tìm được tọa độ B \(\Rightarrow\) tọa độ A \(\Rightarrow\) viết pt trung trực

12 tháng 4 2019

Cảm ơn bạn, mình giải được rồi ạ.