Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(0)=a0+b0+c=2010
=>c=2010
f(1)=a1+b1+c=a1+b1+2010
=>a+b=1 (1)
f(-1)=a1+(-b1)+c=a1-b1+2010
=>a-b=2 (2)
Từ (1) và (2) => a=(2+1):2=1,5
b=(1-2):2=-0,5
Vậy f(2)=1,5.2+(-0,5)x2+2010=2014
\(f\left(-1\right)=-a+b-c+d=2\)
\(f\left(0\right)=d=1\)
\(f\left(\frac{1}{2}\right)=\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c+d=3\)
\(f\left(1\right)=a+b+c+d=7\)
Suy ra \(\hept{\begin{cases}-a+b-c=1\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=7\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{7}{2}\\c=\frac{13}{6}\end{cases}}\)
Ta có \(f\left(1\right)=a+b+c\) và \(f\left(-1\right)=a-b+c\)
Vì \(f\left(1\right)=f\left(-1\right)\) nên \(a+b+c=a-b+c\Rightarrow b=0\)
\(f\left(x\right)=ax^2+bx+c=ax^2+c\)
\(f\left(-x\right)=ax^2-bx+c=ax^2+c\)
Vậy \(f\left(x\right)=f\left(-x\right)\)
a) theo tính chất ta có: f(0+0)= f(0)+f(0)
=> f(0)=f(0)+f(0)
=> f(0)-f(0)=f(0)+f(0)-f(0)
=> 0=f(0)
hay f(0)=0
b) f(0)=f(-x+x)=f(-x)+f(x)
=>0=f(-x)+f(x)
=> f(-x)=0-f(x)=-f(x)
c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
Ta có \(f\left(0\right)=1\)
\(\Rightarrow a\cdot0^2+b\cdot0+c=1\\ \Rightarrow0+0+c=1\\ \Rightarrow c=1\)
\(f\left(1\right)=0\\ \Rightarrow a\cdot1^2+b\cdot1+c=0\\ \Rightarrow a+b+c=0\\ \Rightarrow a+b=-1\left(1\right)\)
\(f\left(-1\right)=6\\ \Rightarrow a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=6\\ \Rightarrow a-b+c=6\\ \Rightarrow a-b=5\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow2a=4\\ \Rightarrow a=2\\ \Rightarrow b=-1-a=-1-2=-3\)
Vậy a = 2 ; b = -3 ; c = 1
\(f\left(x\right)=ax^2+bx+c\)
+ \(f\left(0\right)=1.\)
\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=1\)
\(\Rightarrow f\left(0\right)=a.0+b.0+c=1\)
\(\Rightarrow f\left(0\right)=0+0+c=1\)
\(\Rightarrow f\left(0\right)=c=1\)
\(\Rightarrow c=1.\)
+ \(f\left(1\right)=0.\)
\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=0\)
\(\Rightarrow f\left(1\right)=a.1+b.1+c=0\)
\(\Rightarrow f\left(1\right)=a+b+c=0\)
\(\Rightarrow a+b+c=0\)
Mà \(c=1\left(cmt\right).\)
\(\Rightarrow a+b+1=0\)
\(\Rightarrow a+b=0-1\)
\(\Rightarrow a+b=-1\) (1).
+ \(f\left(-1\right)=6.\)
\(\Rightarrow f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=6\)
\(\Rightarrow f\left(-1\right)=a.1+b.\left(-1\right)+c=6\)
\(\Rightarrow f\left(-1\right)=a+\left(-b\right)+c=6\)
\(\Rightarrow f\left(-1\right)=a-b+c=6\)
\(\Rightarrow a-b+c=6\)
Mà \(c=1\left(cmt\right).\)
\(\Rightarrow a-b+1=6\)
\(\Rightarrow a-b=6-1\)
\(\Rightarrow a-b=5\) (2).
Cộng theo vế (1) và (2) ta được:
\(a+b+a-b=\left(-1\right)+5\)
\(\Rightarrow2a=4\)
\(\Rightarrow a=4:2\)
\(\Rightarrow a=2.\)
+ Ta có: \(a+b=-1.\)
\(\Rightarrow2+b=-1\)
\(\Rightarrow b=\left(-1\right)-2\)
\(\Rightarrow b=-3.\)
Vậy \(a=2;b=-3;c=1.\)
Chúc bạn học tốt!
+) Nhận xét: Nếu a + b = 1 thì f(a) +f(b) = 1. Thật vậy:
Ta có: f(a) + f(b) = \(\frac{100^a}{100^a+10}+\frac{100^b}{100^b+10}=\frac{100^{a+b}+10.100^a+100^{b+a}+10.100^b}{\left(100^a+10\right)\left(100^b+10\right)}\)
\(=\frac{100^1+10.\left(100^a+100^b\right)+100^1}{100^{a+b}+10.\left(100^a+100^b\right)+100}=\frac{200+10.\left(100^a+100^b\right)}{200+10.\left(100^a+100^b\right)}=1\)
+) Áp dụng:
\(f\left(\frac{1}{2015}\right)\) + \(f\left(\frac{2}{2015}\right)\)+ \(f\left(\frac{3}{2015}\right)\)+ ... + \(f\left(\frac{2014}{2015}\right)\)
= \(\left[f\left(\frac{1}{2015}\right)+f\left(\frac{2014}{2015}\right)\right]+\left[f\left(\frac{2}{2015}\right)+f\left(\frac{2013}{2015}\right)\right]+...+\left[f\left(\frac{1007}{2015}\right)+f\left(\frac{1008}{2015}\right)\right]\)
= 1 + 1 + ...+ 1 (có 2014 : 2 = 1007 số 1)
= 1007
\(\left\{{}\begin{matrix}f\left(0\right)=2014\Rightarrow c=2014\left(1\right)\\f\left(1\right)=2015\Rightarrow a+b+c=2015\left(2\right)\\f\left(-1\right)=2017\Rightarrow a-b+c=2017\left(3\right)\end{matrix}\right.\)
\(f\left(-2\right)=4a-2b+c\)
Lấy (3) nhân 3 công (2) trừ (1) nhân 2
\(f\left(-2\right)=4a-2b+c=3.2017+2015-3.2014\)
\(f\left(-2\right)=3\left(2017-2014\right)+2015=2024\)