\(y=f\left(x\right)=ax^2+bx+c\) . Tính \(f\left(-2\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

\(\left\{{}\begin{matrix}f\left(0\right)=2014\Rightarrow c=2014\left(1\right)\\f\left(1\right)=2015\Rightarrow a+b+c=2015\left(2\right)\\f\left(-1\right)=2017\Rightarrow a-b+c=2017\left(3\right)\end{matrix}\right.\)

\(f\left(-2\right)=4a-2b+c\)

Lấy (3) nhân 3 công (2) trừ (1) nhân 2

\(f\left(-2\right)=4a-2b+c=3.2017+2015-3.2014\)

\(f\left(-2\right)=3\left(2017-2014\right)+2015=2024\)

26 tháng 3 2017

f(0)=a0+b0+c=2010

=>c=2010

f(1)=a1+b1+c=a1+b1+2010

=>a+b=1 (1)

f(-1)=a1+(-b1)+c=a1-b1+2010

=>a-b=2 (2)

Từ (1) và (2) => a=(2+1):2=1,5

                        b=(1-2):2=-0,5

Vậy f(2)=1,5.2+(-0,5)x2+2010=2014

DD
4 tháng 2 2021

\(f\left(-1\right)=-a+b-c+d=2\)

\(f\left(0\right)=d=1\)

\(f\left(\frac{1}{2}\right)=\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c+d=3\)

\(f\left(1\right)=a+b+c+d=7\)

Suy ra \(\hept{\begin{cases}-a+b-c=1\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=7\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{7}{2}\\c=\frac{13}{6}\end{cases}}\)

20 tháng 9 2017

Ta có \(f\left(1\right)=a+b+c\)\(f\left(-1\right)=a-b+c\)

\(f\left(1\right)=f\left(-1\right)\) nên \(a+b+c=a-b+c\Rightarrow b=0\)

\(f\left(x\right)=ax^2+bx+c=ax^2+c\)

\(f\left(-x\right)=ax^2-bx+c=ax^2+c\)

Vậy \(f\left(x\right)=f\left(-x\right)\)

6 tháng 11 2018

a) theo tính chất  ta có: f(0+0)= f(0)+f(0)

=> f(0)=f(0)+f(0)

=> f(0)-f(0)=f(0)+f(0)-f(0)

=> 0=f(0)

hay f(0)=0

b)  f(0)=f(-x+x)=f(-x)+f(x)

=>0=f(-x)+f(x)

=> f(-x)=0-f(x)=-f(x)

c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)

29 tháng 2 2020

Ta có \(f\left(0\right)=1\)

\(\Rightarrow a\cdot0^2+b\cdot0+c=1\\ \Rightarrow0+0+c=1\\ \Rightarrow c=1\)

\(f\left(1\right)=0\\ \Rightarrow a\cdot1^2+b\cdot1+c=0\\ \Rightarrow a+b+c=0\\ \Rightarrow a+b=-1\left(1\right)\)

\(f\left(-1\right)=6\\ \Rightarrow a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=6\\ \Rightarrow a-b+c=6\\ \Rightarrow a-b=5\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow2a=4\\ \Rightarrow a=2\\ \Rightarrow b=-1-a=-1-2=-3\)

Vậy a = 2 ; b = -3 ; c = 1

29 tháng 2 2020

\(f\left(x\right)=ax^2+bx+c\)

+ \(f\left(0\right)=1.\)

\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=1\)

\(\Rightarrow f\left(0\right)=a.0+b.0+c=1\)

\(\Rightarrow f\left(0\right)=0+0+c=1\)

\(\Rightarrow f\left(0\right)=c=1\)

\(\Rightarrow c=1.\)

+ \(f\left(1\right)=0.\)

\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=0\)

\(\Rightarrow f\left(1\right)=a.1+b.1+c=0\)

\(\Rightarrow f\left(1\right)=a+b+c=0\)

\(\Rightarrow a+b+c=0\)

\(c=1\left(cmt\right).\)

\(\Rightarrow a+b+1=0\)

\(\Rightarrow a+b=0-1\)

\(\Rightarrow a+b=-1\) (1).

+ \(f\left(-1\right)=6.\)

\(\Rightarrow f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=6\)

\(\Rightarrow f\left(-1\right)=a.1+b.\left(-1\right)+c=6\)

\(\Rightarrow f\left(-1\right)=a+\left(-b\right)+c=6\)

\(\Rightarrow f\left(-1\right)=a-b+c=6\)

\(\Rightarrow a-b+c=6\)

\(c=1\left(cmt\right).\)

\(\Rightarrow a-b+1=6\)

\(\Rightarrow a-b=6-1\)

\(\Rightarrow a-b=5\) (2).

Cộng theo vế (1) và (2) ta được:

\(a+b+a-b=\left(-1\right)+5\)

\(\Rightarrow2a=4\)

\(\Rightarrow a=4:2\)

\(\Rightarrow a=2.\)

+ Ta có: \(a+b=-1.\)

\(\Rightarrow2+b=-1\)

\(\Rightarrow b=\left(-1\right)-2\)

\(\Rightarrow b=-3.\)

Vậy \(a=2;b=-3;c=1.\)

Chúc bạn học tốt!

23 tháng 5 2015

+) Nhận xét: Nếu a + b = 1 thì f(a) +f(b) = 1. Thật vậy:

Ta có: f(a) + f(b) = \(\frac{100^a}{100^a+10}+\frac{100^b}{100^b+10}=\frac{100^{a+b}+10.100^a+100^{b+a}+10.100^b}{\left(100^a+10\right)\left(100^b+10\right)}\)

\(=\frac{100^1+10.\left(100^a+100^b\right)+100^1}{100^{a+b}+10.\left(100^a+100^b\right)+100}=\frac{200+10.\left(100^a+100^b\right)}{200+10.\left(100^a+100^b\right)}=1\)

+) Áp dụng: 

 \(f\left(\frac{1}{2015}\right)\) + \(f\left(\frac{2}{2015}\right)\)\(f\left(\frac{3}{2015}\right)\)+ ... + \(f\left(\frac{2014}{2015}\right)\)

\(\left[f\left(\frac{1}{2015}\right)+f\left(\frac{2014}{2015}\right)\right]+\left[f\left(\frac{2}{2015}\right)+f\left(\frac{2013}{2015}\right)\right]+...+\left[f\left(\frac{1007}{2015}\right)+f\left(\frac{1008}{2015}\right)\right]\)

= 1 + 1 + ...+ 1 (có 2014 : 2 = 1007 số 1)

= 1007