\(\) \(y=f\left(x\right)=3x^2+1\)

Tính : <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

Ta có y = f(x) = 3x2 + 1. Do đó

f(\(\dfrac{1}{2}\)) = 3.\(\left(\dfrac{1}{2}\right)^2\) + 1 = \(\dfrac{3}{4}\)+ 1 = \(\dfrac{7}{4}\)

f(1) = 3.12 + 1 = 3.1 + 1 = 3 + 1 = 4

f(3) = 3.32 + 1 = 3.9 + 1 = 27 + 1 = 28.



19 tháng 4 2017

y = f (x) = 3x2 + 1

f \(\left(\dfrac{1}{2}\right)\)= 3 . \(\left(\dfrac{1}{2}\right)^2\) + 1 = 3 . \(\dfrac{1}{4}\) + 1 = \(\dfrac{3}{4}+1\) = \(\dfrac{7}{4}\)

f (1) = 3 . 12 + 1= 3 + 1 = 4

f (3) = 3 . 32 + 1 = 3 . 9 + 1 = 28

28 tháng 10 2017

Ta có hàm số sau :

\(f\left(1\right)=3.1^2-1=2\)

\(f\left(\frac{-2}{3}\right)=3.\frac{-2}{3}-1=-2-1=-3\)

Vậy hàm số f(1) = 2

Hàm số :\(f\left(\frac{-2}{3}\right)=-3\)

13 tháng 12 2019

F(-1) thì y= 6

F(2) thì y= 3

F(-1/2)= 3

Ta có : \(y=f\left(x\right)=2x^2-3x+1\)

\(f\left(-1\right)=2\left(-1\right)^2-3.\left(-1\right)+1=2.1-\left(-3\right)+1=2+3+1=6\)

\(f\left(2\right)=2.2^2-3.2+1=2.4-6+1=8-6+1=3\)

\(f\left(\frac{-1}{2}\right)=2\left(\frac{1}{2}\right)^2-3.\frac{1}{2}+1=2.\frac{1}{4}-\frac{3}{2}+1=\frac{1}{2}-\frac{3}{2}+\frac{2}{2}=0\)

17 tháng 11 2016

a) \(f\left(3\right)=4\times3^2-5=31\)

\(f\left(-\frac{1}{2}\right)=4\times\left(-\frac{1}{2}\right)^2-5=-4\)

b) để f(x)=-1

<=>\(4x^2-5=-1\)

<=>\(4x^2=4\)

<=>\(x^2=1\)

<=>\(x=\orbr{\begin{cases}1\\-1\end{cases}}\)

24 tháng 3 2020

Cho hàm số y = f(x) = 4x^2 +4y=f(x)=4x2+4. Tính f(-2)f(−2) ; f(2)f(2) ; f(4)f(4).

Đáp số:

f(-2) =f(−2)=  

f(2) =f(2)=  

f(4) =f(4)=  

20 tháng 6 2016
  • \(f\left(\frac{1}{2}\right)=3.\left(\frac{1}{2}\right)^2+1=3.\frac{1}{4}+1=\frac{3}{4}+1=\frac{7}{4}\)
  • \(f\left(1\right)=3.1^2+1=3.1+1=3+1=4\)
  • \(f\left(3\right)=3.3^2+1=3^3+1=27+1=28\)
13 tháng 12 2022

Bài 2:

f(x)=x^2; g(x)=2/x

f(g(x))=(2/x)^2=4/x^2

g(f(x))=g(x^2)=2/x^2