K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2020

Lời giải:

Ta thấy, với mọi số thực $x$ thì:

$f(x)=3x^2-1$

$f(-x)=3(-x)^2-1=3x^2-1$

Do đó: $f(x)=f(-x)$ với mọi số thực $x$

Ta có đpcm.

22 tháng 11 2018

f(x) = 2018x

Ta có : f(a) = 2018a ; f(b) = 2018b

=> f(a) + f(b) = 2018a + 2018b (1)

Ta có :  f(a+b) = 2018(a+b) = 2018a + 2018b (2)

Từ (1) và (2) => đpcm

30 tháng 6 2015

\(\text{1)}\)

\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)

\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)

\(f\left(3\right)=3^2-5\)

\(\text{2)}\)

\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)

\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)

\(\text{3)}\)

\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)

\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)

\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)

\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)

17 tháng 4 2016

sai 1 chút chỗ cÂU 3

nhân vs 3 thì phải là 1/12

25 tháng 12 2021

Cho hàm số y=f(x)= −3x.

Ta có f(\(\dfrac{-3}{2}\)) = -3. (\(\dfrac{-3}{2}\))

                    = \(\dfrac{-3.\left(-3\right)}{2}\)

                    =\(\dfrac{9}{2}\)

Ta có f(-1) = -3. (-1)

                 = 3

Vậy f(\(\dfrac{-3}{2}\)) = \(\dfrac{9}{2}\) và f(-1) = 3.

29 tháng 10 2019

\(f\left(x\right)=4x\) ; \(g\left(x\right)=x^2\) \(\Rightarrow f\left(n\right)=4n\) ; \(g\left(n\right)=n^2\)

\(f\left(1\right)+f\left(2\right)+...+f\left(n\right)=4\left(1+2+...+n\right)=\frac{4n\left(n+1\right)}{2}\)

\(=\frac{4n^2+4n}{2}=\frac{4g\left(n\right)+f\left(n\right)}{2}\)