Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Xét hàm số g(x) = f(x) − f(x + 0,5)
Ta có
g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)
g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)
(vì theo giả thiết f(0) = f(1)).
Do đó,
Giả sử 4 nghiệm phân biệt của phương trình là : \(x_1;x_2;x_3;x_4\)
Đặt \(x^2=y\ge0\), ta có phương trình :
\(\Leftrightarrow y^2-\left(3m+5\right)y+\left(m+1\right)^2=0\left(1\right)\)
Ta phải tìm m sao cho (1) có hai nghiệm phân biệt \(0 < y1 < y2\)
Khi đó (1) có 4 nghiệm là : \(x_1=-\sqrt{y_2};x_2=-\sqrt{y_1};x_3=-\sqrt{y_1};x_4=-\sqrt{y_2}\)
Rõ ràng \(x2 < x2 < x3 < x4\)
Theo đầu bài thì bốn nghiệm lập thành cấp số cộng, nên :
\(\Rightarrow x_3+x_1=2x_2\) V \(x_4+x_1=2x_3\)
\(\Leftrightarrow\sqrt{y_1}-\sqrt{y_2}=2\sqrt{y_1}\)
\(\Rightarrow3\sqrt{y_1}=\sqrt{y_2}\)
\(\Leftrightarrow9y_1=y_2\) (*)
Áp dụng Viet cho phương trình (1) ta có hệ :
\(\begin{cases}\Delta=\left(3m+5\right)^2-4\left(m+1\right)^2>0\\S=y_1+y_2=10y_1=3m+5\\P=y_1y_2=9y_1^2=\left(m+1\right)^2\end{cases}\)
\(\Leftrightarrow\begin{cases}m=5\\m=-\frac{25}{19}\end{cases}\)
a: y'=2/3*3x^2-2x(m+1)+3(m+1)
=x^2-x(2m+2)+3m+3
y'=0
Δ=(2m+2)^2-4(3m+3)=4m^2+8m+4-12m-12=4m^2-4m-8
Để phương trình có hai nghiệm thì 4m^2-4m-8>=0
=>m^2-m-2>=0
=>m>=2 hoặc m<=-1
b: y'=0 có hai nghiệm trái dấu
=>3m+3<0
=>m<-1