K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Đặt (P): \(y=\dfrac{1}{2}x^2\)

Vẽ đồ thị:  

loading...

b:

Thay x=-5 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(-5\right)^2=\dfrac{25}{2}\)

=>\(M\left(-5;-\dfrac{25}{2}\right)\) không thuộc (P)

Thay \(x=-\dfrac{3}{2}\) vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)^2=\dfrac{1}{2}\cdot\dfrac{9}{4}=\dfrac{9}{8}\)

=>\(N\left(-\dfrac{3}{2};\dfrac{9}{8}\right)\) thuộc (P)

Thay \(x=\dfrac{1}{2}\) vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2}\cdot\dfrac{1}{4}=\dfrac{1}{8}\ne2\)

=>\(Q\left(\dfrac{1}{2};2\right)\) không thuộc (P)

26 tháng 2 2022

a, Hoành độ giao điểm tm pt 

\(x^2-\dfrac{1}{2}x=0\Leftrightarrow x\left(x-\dfrac{1}{2}\right)=0\Leftrightarrow x=0;x=\dfrac{1}{2}\)

Với x = 0 => y = 0 

Với x = 1/2 => y = 1/4 

Vậy (P) cắt (d) tại O(0;0) ; A(1/2;1/4) 

17 tháng 11 2023

a: Thay x=1 vào \(y=-\dfrac{5}{2}x\), ta được:

\(y=-\dfrac{5}{2}\cdot1=-\dfrac{5}{2}\)

Vậy: \(A\left(1;-\dfrac{5}{2}\right)\) thuộc đồ thị hàm số y=-5/2x

b: Thay x=2 vào \(y=-\dfrac{5}{2}x\), ta được:

\(y=-\dfrac{5}{2}\cdot2=-5\)

=>B(2;-5) thuộc đồ thị hàm số y=-5/2x

Thay x=3 vào y=-5/2x, ta được:

\(y=-\dfrac{5}{2}\cdot3=-\dfrac{15}{2}\)<>7

=>\(C\left(3;7\right)\) không thuộc đồ thị hàm số y=-5/2x

Thay x=1 vào y=-5/2x, ta được:

\(y=-\dfrac{5}{2}\cdot1=-\dfrac{5}{2}\)<>5/2

=>\(D\left(1;\dfrac{5}{2}\right)\) không thuộc đồ thị hàm số \(y=-\dfrac{5}{2}x\)

Thay x=0 vào \(y=-\dfrac{5}{2}x\), ta được:

\(y=-\dfrac{5}{2}\cdot0=0\)<>4

=>E(0;4) không thuộc đồ thị hàm số \(y=-\dfrac{5}{2}x\)

Bài 1: 

a: Thay x=-2 và y=2 vào hàm số, ta được:

4a=2

hay a=1/2

Bài 2: 

a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=3\\4x-12y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-17\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\3y=x-5=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}=1\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{y}=\dfrac{1}{2}-\dfrac{1}{5}=\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(2;\dfrac{10}{3}\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Lời giải:
a. 

b. Để $C(-2;m)$ thuộc $(P)$ thì:

$y_C=\frac{1}{2}x_C^2$

$\Leftrightarrow m=\frac{1}{2}(-2)^2=2$

 

29 tháng 3 2021

1/ \(\begin{array}{|c|c|c|}\hline x&-2&-1&0&1&2\\\hline y&2&0,5&0&0,5&2\\\hline\end{array}\)

\(\to\) Đồ thị hàm số đi qua điểm \( (-2;2);(-1;0,5);(0;0);(1;0,5);(2;2)\)

2/ \( C(2;m)\in (P)\)

\(\to m=\dfrac{1}{2}.2^2=2\)

Vậy \(m=2\)undefined

2) Thay x=2 và y=m vào (P), ta được:

\(m=\dfrac{1}{2}\cdot2^2=\dfrac{1}{2}\cdot4=2\)

11 tháng 10 2021

b: Thay x=2 vào hàm số, ta được:

\(y=\dfrac{-1}{2}\cdot2^2=-2\)

25 tháng 12 2023

Bài 3:

\(A=\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}+\dfrac{x+22\sqrt{x}-32}{3x-10\sqrt{x}+8}+\dfrac{4+2\sqrt{x}}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}+\dfrac{x+22\sqrt{x}-32}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+4}{\sqrt{x}-2}\)

\(=\dfrac{\left(2\sqrt{x}-4\right)\left(\sqrt{x}-2\right)+x+22\sqrt{x}-32+\left(2\sqrt{x}+4\right)\left(3\sqrt{x}-4\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2x-8\sqrt{x}+8+x+22\sqrt{x}-32+6x-8\sqrt{x}+12\sqrt{x}-16}{\left(3\sqrt{x}-4\right)\cdot\left(\sqrt{x}-2\right)}\)

\(=\dfrac{9x+18\sqrt{x}-40}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{9x-12\sqrt{x}+30\sqrt{x}-40}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(3\sqrt{x}-4\right)\left(3\sqrt{x}+10\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}+10}{\sqrt{x}-2}\)

Bài 2:

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+\dfrac{3}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\3-x=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)

=>A(3;0)

Tọa độ B là: 

\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}x+\dfrac{3}{2}=-\dfrac{1}{2}\cdot0+\dfrac{3}{2}=1,5\end{matrix}\right.\)

=>B(0;1,5)

\(OA=\sqrt{\left(3-0\right)^2+\left(0-0\right)^2}=\sqrt{3^2+0^2}=3\)

\(OB=\sqrt{\left(0-0\right)^2+\left(1,5-0\right)^2}=1,5\)

Ox\(\perp\)Oy nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=2.25\)

Bài 1:

a: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2+4x+4}=2\)

=>\(\sqrt{\left(x+2\right)^2}=2\)

=>|x+2|=2

=>\(\left[{}\begin{matrix}x+2=2\\x+2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b: ĐKXĐ: x>=2

\(\sqrt{4x-8}-7\cdot\sqrt{\dfrac{x-2}{49}}=5\)

=>\(2\sqrt{x-2}-7\cdot\dfrac{\sqrt{x-2}}{7}=5\)

=>\(\sqrt{x-2}=5\)

=>x-2=25

=>x=27(nhận)