K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R

Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0

Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0

⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0

Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0

b)

Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0

Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0

Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R

Giải thích các bước giải:

30 tháng 10 2021

câu c đâu rui bạn oi

AH
Akai Haruma
Giáo viên
29 tháng 6

Lời giải:

Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$

$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$

b.

Để hàm nghịch biến thì $1-m^2<0$

$\Leftrightarrow (1-m)(1+m)<0$

$\Leftrightarrow m> 1$ hoặc $m< -1$

Để hàm đồng biến thì $1-m^2>0$

$\Leftrightarrow (1-m)(1+m)>0$

$\Leftrightarrow -1< m< 1$

19 tháng 7 2021

a) Để hàm số đã cho là hàm bậc nhất thì m20m2

b) Để hàm số đã cho đồng biến trên tập xác định thì :

m2>0m>2

c) Để hàm số đã cho nghịch biến trên tập xác định thì:

a) Để hàm số là hàm số bậc nhất thì \(2-m\ne0\)

\(\Leftrightarrow m\ne2\)

b) Để hàm số đồng biến thì 2-m>0

hay m<2

c) Để hàm số nghịch biến thì 2-m<0

hay m>2

5 tháng 8 2023

a) Để hàm số là hàm bậc nhất thì 3 - m 0

m 3

b) Để hàm số là nghịch biến thì 3 - m < 0

m > 3

c) Thay tọa độ điểm A(2; -3) vào hàm số, ta được:

(3 - m).2 + 2 = -3

6 - 2m + 2 = -3

8 - 2m = -3

2m = 11

m = 11/2 (nhận)

Vậy m = 11/2 thì đồ thị hàm số đi qua A(2; -3)

(Sửa theo yêu cầu rồi nhé em!)

d) Thay tọa độ B(-1; -5) vào hàm số, ta được:

(2 - m).(-1) + 2 = -5

-2 + m + 2 = -5

m = -5 (nhận)

Vậy m = -5 thì đồ thị hàm số đi qua B(-1; -5)

5 tháng 8 2023

Chị ơi câu c điểm A( 2; -3) chị ạ

31 tháng 10 2021

a) Ta có \(y=mx+m-2x=\left(m-2\right)x+m\)

Như vậy để y là hàm số bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

b) Để y là hàm số nghịch biến thì \(m-2< 0\Leftrightarrow m< 2\)

c) Để y là hàm số đồng biến thì \(m-2>0\Leftrightarrow m>2\)

b: để hàm số đồng biến thì m-2>0

hay m>2

7 tháng 12 2021

a, Để hs là hàm bậc nhất thì a\(\ne\)0
   <=> m-2\(\ne0< =>m\ne2\)
b, để hs đồng biến thì a>0
<=> m-2>0<=>m>2
để hs nghichj biến thì a<0
<=> m-2<0<=>m<2

2: m^2-m+1

=m^2-m+1/4+3/4

=(m-1/2)^2+3/4>=3/4>0 với mọi m

=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R

24 tháng 10 2021

a) Hàm số đồng biến trên R\(\Rightarrow a>0\Rightarrow m-2>0\Rightarrow m>2\)

b) Hàm số nghịch biến trên R

    \(\Leftrightarrow a< 0\Rightarrow m-2< 0\Rightarrow m< 2\)

Bài 1:

a: Để (d) là hàm số bậc nhất thì 2m-2<>0

hay m<>1

b: Để (d) là hàm số đồng biến thì 2m-2>0

hay m>1

c: Hàm số (d') đồng biến vì a=4>0

Bài 2: 

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)