Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-6}{8}=\frac{3y+15}{9}=\frac{4z-16}{20}\)
\(=\frac{2x+3y-4z-6+15+16}{-3}=-\frac{100}{3}\)
Làm nốt
2
\(\left|x-2\right|\ge0\) dấu "=" xảy ra tại x=2
\(\left(x-y\right)^2\ge0\) dấu "=" xảy ra tại x=y
\(3\sqrt{z^2+9}\ge3\sqrt{9}=9\) dấu "=" xảy ra tại z=0
\(\Rightarrow C\ge0+0+9+16=25\) dấu "=" xảy ra tại x=y=2;z=0
5
Chứng minh \(1< M< 2\) là OK
câu a : vì A(a; -1,4 ) thuộc hàm số y = 3,5x
nên a= -1,4 : 3,5= -0,4
câu b : vì B( 0,35; b ) thuộc hàm số y= 1/7x
nên b = 0,35 . 1/7= 0,05.
a, Với x = 1 thì y = \(\frac{-1}{2}\cdot1=\frac{-1}{2}\)
Ta được \(A\left[1;-\frac{1}{2}\right]\)thuộc đồ thị hàm số y = \(-\frac{1}{2}x\)
Đường thẳng OA là đồ thị hàm số y = -1/2x
y x 3 2 1 1 2 3 4 -2 -3 -1 -2 -3 -4 O -1 -1/2 A y=-1/2x
b, Thay \(A\left[\frac{1}{2};\frac{1}{4}\right]\)vào đồ thị hàm số y = -1/2x ta có :
\(y=\left[-\frac{1}{2}\right]\cdot\frac{1}{2}=-\frac{1}{4}\ne\frac{1}{4}\)Đẳng thức sai
Thay \(B\left[\frac{1}{2};-\frac{1}{4}\right]\)vào đồ thị hàm số y = -1/2x ta có :
\(y=\left[-\frac{1}{2}\right]\cdot\frac{1}{2}=-\frac{1}{4}\)Đẳng thức đúng
Bỏ dấu bằng vào chỗ C = [4;-2] nhé
Thay \(C\left[-4;2\right]\)vào đô thị hàm số y = -1/2x ta có :
\(y=\left[-\frac{1}{2}\right]\cdot\left[-4\right]=2\)Đẳng thức đúng
Vậy : ....
2.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)
=> x,y,z=
1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)
=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)
6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)
Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> M > 1
Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)
Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> M < 2 (2)
Kết hợp (1) và (2) => 1 < M < 2
=> \(M\notinℤ\)(ĐPCM)
\(\frac{4}{5}x+0=4,5\)
\(\frac{4}{5}x=4,5\)
\(x=4,5:\frac{4}{5}\)
\(x=5,625\)
vậy \(x=5,625\)
\(\frac{x}{3}=\frac{-5}{9}\)
\(\Rightarrow9x=-5.3\)
\(\Rightarrow9x=-15\)
\(\Rightarrow x=\frac{-5}{3}\)
vậy \(x=\frac{-5}{3}\)
\(\left|x+5\right|-\frac{1}{3}=\frac{2}{3}\)
\(\left|x+5\right|=\frac{2}{3}+\frac{1}{3}\)
\(\left|x+5\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x+5=1\\x+5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
\(\left(x-2\right)^3=-125\)
\(\left(x-2\right)^3=\left(-5\right)^3\)
\(\Rightarrow x-2=-5\)
\(\Rightarrow x=-3\)
vậy \(x=-3\)
a) Vì đths \(y=\)\(\frac{a}{x}\) đi qua \(M\left(2;3\right)\)
Thay \(x=2;y=3\)
\(\Leftrightarrow\)\(\frac{a}{2}=3\)
\(\Leftrightarrow a=6\)
Vậy hệ số \(a=6\)
b) * Xét điểm \(N\left(-1;6\right)\)
\(\Rightarrow\)Thay \(x=-1;y=6\)vào hàm số \(y=\frac{6}{x}\)
\(\Rightarrow6\ne\frac{6}{-1}\Rightarrow N\notinđths\)
* Xét điểm \(P\left(\frac{1}{3};18\right)\)
\(\Rightarrow\)Thay \(x=\frac{1}{3};y=18\) vào hàm số \(y=\frac{6}{x}\)
\(\Rightarrow18=\frac{6}{\frac{1}{3}}\Rightarrow P\inđths\)
a)
dths qua K(-2;2) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\) \(\Leftrightarrow2=\left(3m-2\right)\left|-2\right|\Leftrightarrow3m-2=1;m=1\)
b)
\(\left(1\right);y=\left|x\right|\)
Điểm A \(\Leftrightarrow\left\{{}\begin{matrix}x=a\\y=b\end{matrix}\right.\) \(\Leftrightarrow b=\left|a\right|\)
2018 a+b =2019 <=.> \(2018a+\left|a\right|=2019\)
\(\left[{}\begin{matrix}a< 0\Leftrightarrow2018a-a=2019;a=\dfrac{2019}{2017}\left(l\right)\\a\ge0\Leftrightarrow2018a+a=2019;a=\dfrac{2019}{2019}=1\end{matrix}\right.\)
\(A\left(1;1\right)\)