Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đồ thị được vẽ như hình bên.
b) Gọi α là góc giữa đường thẳng y = -2x + 3 và trục Ox.
Thế thì = 1800 - α.
Ta có tg = = = 2.
Suy ra ≈ 63026’
Vậy α ≈ 116034’.
Bài giải:
a) Đồ thị được vẽ như hình bên.
b) Gọi α là góc giữa đường thẳng y = -2x + 3 và trục Ox.
Thế thì = 1800 - α.
Ta có tg = = = 2.
Suy ra ≈ 63026’
Vậy α ≈ 116034
Bài 3:
b: \(tan\left(a_1\right)=-2\)
nên \(a_1\simeq117^0\)
\(tan\left(a_2\right)=-1\)
nên a2=135 độ
\(tan\left(a3\right)=-0,5\)
nên a3=153 độ
Bài 2:
b: \(tan\left(a1\right)=0,5\)
nên a1=27 độ
\(tan\left(a2\right)=1\)
nên a2=45 độ
\(tan\left(a3\right)=2\)
nên a3=64 độ
a: Vì (d)//y=1/2x+1 nên \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b\ne1\end{matrix}\right.\)
Vậy: (d): \(y=\dfrac{1}{2}x+b\)
Thay x=2 và y=2 vào (d), ta được:
\(b+\dfrac{1}{2}\cdot2=2\)
=>b+1=2
=>b=1
vậy: (d): \(y=\dfrac{1}{2}x+1\)
b:
c: Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
Ta có: (d): \(y=\dfrac{1}{2}x+1\)
=>a=1/2
=>\(tan\alpha=a=\dfrac{1}{2}\)
=>\(\alpha\simeq26^034'\)
d: tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{2}x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{2}x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-2\end{matrix}\right.\)
Tọa độ C là;
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}x+1=\dfrac{1}{2}\cdot0+1=1\end{matrix}\right.\)
Vậy: B(-2;0); C(1;0)
\(OB=\sqrt{\left(-2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2+0^2}=2\)
\(OC=\sqrt{\left(1-0\right)^2+\left(0-0\right)^2}=\sqrt{1^2+0^2}=1\)
Vì Ox\(\perp\)Oy nên OB\(\perp\)OC
=>ΔBOC vuông tại O
=>\(S_{BOC}=\dfrac{1}{2}\cdot OB\cdot OC=\dfrac{1}{2}\cdot2\cdot1=1\)
Lời giải:
a.
b.
Gọi góc tạo bởi đường thẳng trên với trục $Ox$ là $\alpha$
Ta có:
$\tan \alpha=2\Rightarrow \alpha=63,43^0$