K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2021

a) Để hàm số y = (2m - 3)x - 1 // với đường thẳng y = -5x + 3 

<=> \(\hept{\begin{cases}2m-3=-5\\-1\ne3\end{cases}}\)<=> 2m = -2 <=> m = -1

b) Hàm số y = (2m - 3)x - 1 đi qua điểm A(-1; 0) => x = -1 và y = 0

Do đó: 0 = (2m - 3).(-1) - 1 = 0 <=> 3 - 2m = 1 <=> 2m = 2 <=> m = 1

Vậy để đò thị hàm số đi qua A(-1; 0) <=> m = 0

c) Gọi tọa độ gđ của 3 đường thẳng y = (2m- 3 )x - 1 , y = 1 và y = 2x - 5 là (x0; y0)

Do đó: \(\hept{\begin{cases}y_0=\left(2m-3\right)x_0-1\\y_0=1\\y_0=2x_0-5\end{cases}}\) <=> \(\hept{\begin{cases}1=\left(2m-3\right)x_0-1\\2x_0-5=1\end{cases}}\) 

<=> \(\hept{\begin{cases}\left(2m-3\right)x_0=2\\2x_0=6\end{cases}}\) <=> \(\hept{\begin{cases}\left(2m-3\right).3=2\\x_0=3\end{cases}}\) <=> 2m - 3 = 2/3 <=> 2m = 11/3 <=> m = 11/6

Vậy m = 11/6 thì đồ thị hàm số đã cho và các đường thẳng y = 0 và y = 2x - 5 đồng quy tại 1 điểm

23 tháng 12 2023

a: Để hàm số y=(m-1)x+3 đồng biến trên R thì m-1>0

=>m>1

Để hàm số y=(m-1)x+3 nghịch biến trên R thì m-1<0

=>m<1

b: Thay m=3 vào (d), ta được:

\(y=\left(3-1\right)x+3=2x+3\)

Vẽ đồ thị:

loading...

c: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-1=2\\3\ne-1\left(đúng\right)\end{matrix}\right.\)

=>m-1=2

=>m=3

d: Thay x=-2 và y=0 vào (d1), ta được:

\(-2\left(m-1\right)+3=0\)

=>-2(m-1)=-3

=>\(m-1=\dfrac{3}{2}\)

=>\(m=\dfrac{3}{2}+1=\dfrac{5}{2}\)

23 tháng 12 2023

Em cảm ơn

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)

c: Thay x=1 và y=-4 vào (d), ta được:

\(m-1+m+3=-4\)

\(\Leftrightarrow2m=-6\)

hay m=-3

29 tháng 4 2021

a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)

b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)

c, Thay x = 2 ; y = 3 vào hàm số y ta được : 

\(2\left(m+5\right)+2m-10=3\)

\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)

d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0 

Thay x = 0 ; y = 9 vào hàm số y ta được : 

\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)

29 tháng 4 2021

e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0 

Thay x = 10 ; y = 0 vào hàm số y ta được : 

\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)

f, Ta có : y = ( m + 5 )x + 2m -  10 => a = m + 5 ; b = 2m - 10 ( d1 ) 

y = 2x - 1 => a = 2 ; y = -1 ( d2 ) 

Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)

g, h cái này mình quên rồi, xin lỗi )): 

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 Với giá trị nào của m thì y là hàm số bậc nhấtVới giá trị nào của m thì hàm số đồng biến.Tìm m để đồ thị hàm số điqua điểm A(2; 3)Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.Tìm m để đồ thị đi qua điểm 10 trên trục hoành .Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1Chứng minh đồ thị hàm số luôn đi...
Đọc tiếp

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ 
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2 
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y 
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x 
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục

4
6 tháng 1 2019

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

6 tháng 1 2019

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

NV
21 tháng 11 2021

a.

ĐTHS song với với đường thẳng đã cho khi:

\(\left\{{}\begin{matrix}m-2=-1\\m+3\ne3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=1\\m\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)

b.

Gọi A là giao điểm của ĐTHS và \(y=2x+4\Rightarrow y_A=2\)

\(\Rightarrow2x_A+4=2\Rightarrow x_A=-1\)

\(\Rightarrow A\left(-1;2\right)\)

Thế tọa độ A vào (1):

\(-1\left(m-2\right)+m+3=2\Leftrightarrow5=2\left(ktm\right)\)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài