K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Chứng minh họ đường thẳng y = mx + (2m + 1) (1) luôn đi qua một điểm cố định nào đó.

Giả sử điểm A( x o ;  y o ) là điểm mà họ đường thẳng (1) đi qua với mọi m. Khi đó tọa độ điểm A nghiệm đúng phương trình hàm số (1).

Với mọi m, ta có:  y o  = m x o  + (2m + 1) ⇔ ( x o  + 2)m + (1 – y) = 0

Vì phương trình nghiệm đúng với mọi giá trị của m nên tất cả các hệ số phải bằng 0.

Suy ra:  x o  + 2 = 0 ⇔  x o  = -2

1 –  y o  = 0 ⇔  y o = 1

Vậy A(-2; 1) là điểm cố định mà họ đường thẳng y = mx + (2m + 1) luôn đi qua với mọi giá trị m.

28 tháng 11 2023

a: y=(m-2)x+2

=mx-2x+2

Tọa độ điểm mà D luôn đi qua là;

\(\left\{{}\begin{matrix}x=0\\y=-2x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0+2=2\end{matrix}\right.\)

b: Đề sai rồi bạn

28 tháng 11 2023

Đề b : tìm m để d đến gốc tọa độ =1

 

 

 

 

 

 

 

16 tháng 7 2021

a) (d) đi qua điểm \(M\left(-3;1\right)\Rightarrow1=\left(2m-1\right).\left(-3\right)-4m+5\)

\(\Rightarrow1=-6m+3-4m+5\Rightarrow1=-10m+8\Rightarrow10m=7\Rightarrow m=\dfrac{7}{10}\)

\(\Rightarrow y=\dfrac{2}{5}x+\dfrac{11}{5}\)

b) Gọi \(A\left(x_A;y_A\right)\) là điểm cố định mà (d) luôn đi qua

\(\Rightarrow y_A=\left(2m-1\right)x_A-4m+5\)

\(\Rightarrow2mx_A-x_A-4m+5-y_A=0\Rightarrow2m\left(x_A-2\right)-\left(x_A+y_A-5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=2\\x_A+y_A-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=2\\y_A=3\end{matrix}\right.\Rightarrow A\left(2;3\right)\)

\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(2;3\right)\) cố định

a) Thay x=-3 và y=1 vào (d), ta được:

\(\left(2m-1\right)\cdot\left(-3\right)-4m+5=1\)

\(\Leftrightarrow-6m+3-4m+5=1\)

\(\Leftrightarrow-10m=-7\)

hay \(m=\dfrac{7}{10}\)

NV
8 tháng 7 2021

a.

Để d đi qua M \(\Rightarrow\) tọa độ M thỏa mãn pt d

\(\Rightarrow1=-3\left(2m-1\right)-4m+5\)

\(\Rightarrow m=\dfrac{7}{10}\)

b.

Giả sử tọa độ điểm cố định là \(A\left(x_0;y_0\right)\Rightarrow\) với mọi m ta luôn có:

\(y_0=\left(2m-1\right)x_0-4m+5\)

\(\Leftrightarrow2m\left(x_0-2\right)-\left(x_0+y_0-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0+y_0-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=3\end{matrix}\right.\)

Vậy với mọi m thì d luôn đi qua điểm cố định có tọa độ \(\left(2;3\right)\)

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3Bài 2: Cho đường thẳng (d): y = 4xviết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)Bài 4: Cho 2 hàm số bậc...
Đọc tiếp

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017

b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3

Bài 2: Cho đường thẳng (d): y = 4x

viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10

Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)

Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1

a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2

b) Vẽ đồ thị 2 hàm số trên khi m = 2

c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung

Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)

Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5

a) Tìm m để 3 đường thẳng đã cho đồng quy

b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi

 

0