Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) Cùng cắt nhau tại 1 điểm trên trục tung nên x = 0 => m - 3 = 5 => m = 8
3) \(m=\frac{2+\sqrt{2}}{2\sqrt{2}-1}=\frac{\left(2+\sqrt{2}\right)\left(2\sqrt{2}+1\right)}{7}=\frac{5\sqrt{2}+6}{7}\)
a) Đồ thị được vẽ như hình bên.
b) Vì M thuộc đồ thị y = y = x + 2 và tung độ của nó là y = 1 nên x + 2= 1.
Suy ra x = -1,5.
Vậy M(-1,5; 1).
Vì N thuộc đồ thị y = - x + 2 và tung độ của N là y = 1 nên - x + 2 = 1.
Suy ra x = .
Vậy N(; 1).
Bài giải:
a) Đồ thị được vẽ như hình bên.
b) Vì M thuộc đồ thị y = y = x + 2 và tung độ của nó là y = 1 nên x + 2= 1.
Suy ra x = -1,5.
Vậy M(-1,5; 1).
Vì N thuộc đồ thị y = - x + 2 và tung độ của N là y = 1 nên - x + 2 = 1.
Suy ra x = .
Vậy N(; 1)
a) Hai đường thẳng cắt nhau khi 2m + 1 ≠ 2 hay m ≠ 0,5, k túy ý.
b) Hai đường thẳng song song với nhau khi 2m + 1 = 2 và 3k ≠ 2k - 3 hay khi m = 0,5 và k ≠ -3.
c) Hai đường thẳng trùng nhau khi 2m + 1 = 2 và 3k = 2k - 3 hay khi m = 0,5 và k = -3.
Bài giải:
a) Hai đường thẳng cắt nhau khi 2m + 1 ≠ 2 hay m ≠ 0,5, k túy ý.
b) Hai đường thẳng song song với nhau khi 2m + 1 = 2 và 3k ≠ 2k - 3 hay khi m = 0,5 và k ≠ -3.
c) Hai đường thẳng trùng nhau khi 2m + 1 = 2 và 3k = 2k - 3 hay khi m = 0,5 và k = -3
a)
đường thẳng (d1) song song với đường thẳng (d2) khi :
a = a' và b khác b'
suy ra :
\(m-1=3\) \(\Leftrightarrow m=4\)
vậy đường thẳng (d1) song song với đường thẳng (d2) khi m = 4
Câu 1: để hàm số có đồ thị hàm số đi qua điểm A và B nên tọa độ của A,B thỏa mãn đồ thị nên ta có hệ
\(\hept{\begin{cases}-2a+b=5\\a+b=-4\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=-1\end{cases}}\)
Câu 2 :
- để hàm số luôn nghịch biến thì hệ số góc của đường thẳng nhỏ hơn 0 nên : \(2m-1< 0\Leftrightarrow m< \frac{1}{2}\)
- Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \(\frac{-2}{3}\)tức giao điểm có tọa độ \(\left(-\frac{2}{3};0\right)\)nên có phương trình :\(0=\frac{-2\left(2m-1\right)}{3}+m+2\Leftrightarrow-4m+2+3m+6=0\Leftrightarrow m=8\)
â ) hàm số y = ( 2m - 1 )x + m + 2 đồng biến <=> a > 0
<=> 2m - 1 > 0
<=> 2m > 1
<=> m > \(\frac{1}{2}\)
Vay : khi m > \(\frac{1}{2}\) thì hàm số trên đồng biến
Lời giải:
Để 2 đths cắt nhau thì $2m-1\neq 1\Leftrightarrow m\neq 1$
PT hoành độ giao điểm:
$(2m-1)x+m-3=x-5$
$\Leftrightarrow (2m-2)x=-(m+2)$
$\Leftrightarrow x=\frac{-(m+2)}{2m-2}$ ($m\neq 1$)
Khi đó:
$y=x-5=\frac{-(m+2)}{2m-2}-5$
Để 2 đths cắt nhau tại điểm có tung độ -3 thì:
$y=\frac{-(m+2)}{2m-2}-5=-3$
$\Leftrightarrow \frac{-(m+2)}{2m-2}=2$
$\Rightarrow -(m+2)=4m-4$
$\Leftrightarrow 5m=2$
$\Leftrightarrow m=\frac{2}{5}$ (tm)