K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Để hàm số đạt giá trị nhỏ nhất bằng 0 khi x=0 thì 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

b) Để hàm số đồng biến khi x<0 và nghịch biến khi x>0 thì 2m-1<0

\(\Leftrightarrow2m< 1\)

hay \(m< \dfrac{1}{2}\)

 

a: Để (1) đồng biến thì m-1>0

=>m>1

Để (1) nghịch biến thì m-1<0

=>m<1

b: Khi m=0 thì (1) sẽ là y=-x+2

loading...c: y=(m-1)x+2-m

=mx-x+2-m

=m(x-1)-x+2

Điểm mà (1) luôn đi qua là:

x-1=0 và y=-x+2

=>x=1 và y=-1+2=1

26 tháng 12 2021

Em ơi hình như ảnh bị lỗi ấy!

26 tháng 12 2021

\(a,HS\text{Đ}B\Leftrightarrow a>0\\ \Leftrightarrow2m-4>0\\ \Leftrightarrow m>2\\ b,Thay:x_A=2;y_A=3.v\text{à}oHS:\\ y_A=\left(2m-4\right).x_A+m-1\\ \Leftrightarrow3=\left(2m-4\right).2+m-1\\ \Leftrightarrow5m=12\\ \Leftrightarrow m=\dfrac{12}{5}\\ c,m=3\Rightarrow y=\left(2.3-4\right)x+3-1=2x+2\)

Em tự vẽ đồ thi cho pt y=2x+2 nha!

NV
30 tháng 3 2023

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

23 tháng 11 2018

a) Hàm số đồng biến khi m - 2 > 0

                                    <=> m > 2

   Hàm số nghịch biến khi m - 2 < 0

                                  <=> m < 2

23 tháng 11 2018

b) Vì A(1;-2) thuộc đồ thị

=> -2 = 1 ( m - 2 ) + 3

<=> -2 = m - 2 + 3

<=> m = 1

Vậy m = 1

a: Thay x=1 và y=4 vào (1), ta được:

\(m\cdot1+1=4\)

=>m+1=4

=>m=3

Thay m=3 vào y=mx+1, ta được:

\(y=3\cdot x+1=3x+1\)

Vì a=3>0

nên hàm số y=3x+1 đồng biến trên R

b: Để đồ thị hàm số (1) song song với (d) thì

\(\left\{{}\begin{matrix}m^2=m\\m+1\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne0\end{matrix}\right.\)

=>m-1=0

=>m=1

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$

Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$

b. Để đths đi qua điểm $A(-1;1)$ thì:

$y_A=(m-1)x_A+m$

$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$

$\Leftrightarrow 1=1$ (luôn đúng)

Vậy đths luôn đi qua điểm A với mọi $m$

c.

$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$

Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:

\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)

d,

ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$

$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$

$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$