Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (d) cắt trục tung tại điểm có tung độ bằng -1
\(\Rightarrow\) tọa độ của điểm đó là \(\left(0,-1\right)\)
\(\Rightarrow-1=-3m+3\Rightarrow m=\dfrac{4}{3}\Rightarrow y=\dfrac{5}{3}x-1\)
c) Gọi điểm \(A\left(x_0,y_0\right)\) là điểm cố định mà (d) luôn đi qua
\(\Rightarrow y_0=\left(2m-1\right)x_0-3m+3\Rightarrow2mx_0-x_0-3m+3-y_0=0\)
\(\Rightarrow m\left(2x_0-3\right)-x_0-y_0+3=0\Rightarrow\left\{{}\begin{matrix}2x_0-3=0\\3-x_0-y_0=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{3}{2}\\y_0=\dfrac{3}{2}\end{matrix}\right.\Rightarrow A\left(\dfrac{3}{2};\dfrac{3}{2}\right)\)
b)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Để (d) cắt trục tung tại điểm có tung độ là -1 nên Thay x=0 và y=-1 vào hàm số y=(2m-1)x-3m+5, ta được:
\(\left(2m-1\right)\cdot0-3m+5=-1\)
\(\Leftrightarrow-3m+5=-1\)
\(\Leftrightarrow-3m=-1-5=-6\)
hay m=2(nhận)
Vậy: Khi m=2 thì (d) cắt trục tung tung tại điểm có tung độ bằng -1
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
![](https://rs.olm.vn/images/avt/0.png?1311)
4) Cùng cắt nhau tại 1 điểm trên trục tung nên x = 0 => m - 3 = 5 => m = 8
3) \(m=\frac{2+\sqrt{2}}{2\sqrt{2}-1}=\frac{\left(2+\sqrt{2}\right)\left(2\sqrt{2}+1\right)}{7}=\frac{5\sqrt{2}+6}{7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Lời giải:
$(d)$ cắt trục tung tại điểm có tung độ bằng -1, tức là $(d)$ cắt trục tung tại điểm $(0,-1)$
$\Rightarrow -1=(2m-1).0-3m+5$
$\Leftrightarrow -1=-3m+5\Leftrightarrow -6=-3m$
$\Leftrightarrow m=2$
Với $m=2$ thì đths là $y=3x-1$ (bạn có thể tự vẽ)
c.
Giả sử $(d)$ luôn đi qua 1 điểm cố định với mọi $m$ như đề nói. Gọi điểm đó là $(x_0,y_0)$.
Khi đó:
$y_0=(2m-1)x_0-3m+5, \forall m$
$\Leftrightarrow 2mx_0-x_0-3m+5-y_0=0, \forall m$
$\Leftrightarrow m(2x_0-3)+(5-x_0-y_0)=0, \forall m$
$\Rightarrow 2x_0-3=5-x_0-y_0=0$
$\Leftrightarrow x_0=\frac{3}{2}; y_0=\frac{7}{2}$
Vậy $(d)$ luôn đi qua điểm cố định $(\frac{3}{2}; \frac{7}{2})$