K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2019

\(y'=x^2-2\left(m+2\right)x+2m+3\)

\(a+b+c=1-2m-4+2m+3=0\)

\(\Rightarrow y'=0\) luôn có nghiệm

Để hàm số có cực đại, cực tiểu \(\Leftrightarrow2m+3\ne1\Rightarrow m\ne-1\)

Khi đó ta có \(\frac{x_1+x_2}{2}=1\Leftrightarrow m+2=1\Rightarrow m=-1\)

Vậy ko tồn tại m thỏa mãn

20 tháng 1 2017

Chọn D.

 

17 tháng 12 2017

Đáp án đúng : D

3 tháng 2 2018

Đáp án đúng : A

5 tháng 8 2020

Ta có \(y'=x^2-x\left(sina+cosa\right)+\frac{3}{4}sin2a\)

Để y có cực đại và cực tiểu thì y' đổi dấu hai lần, tức là:

\(\Delta=\left(sina+cosa\right)^2-3sin2a>0\)

\(\Leftrightarrow1+sin2a-3sin2a>0\)

\(\Leftrightarrow sin2a< \frac{1}{2}\)

\(\Leftrightarrow\frac{5\eta}{6}+k2\eta< 2a< \frac{13\eta}{6}+k2\eta\)

\(\Leftrightarrow\frac{5\eta}{12}+k\eta< a< \frac{13\eta}{12}+k\eta\)

5 tháng 8 2020

Tại cực trị \(y'=0\Leftrightarrow x^2-x\left(sina+cosa\right)+\frac{3}{4}sin2a=0\)(*)

(*) cho ta\(x_1+x_2=sina+cosa,x_1x_2=\frac{3}{4}sin2a\)(*)

Để \(x_1+x_2=x^2_1+x^2_2\)thì \(x_1+x_2=\left(x_1+x_2\right)^2-2x_1+x_2\)

\(\Leftrightarrow sina+cosa=\left(sina+cosa\right)^2-\frac{3}{2}sin2a\)

\(\Leftrightarrow sina+cosa=1-\frac{1}{2}sin2a\)

Đặt \(t=cosa+sina=\sqrt{2}cos\left(a-\frac{\eta}{4}\right),t\in\left[-\sqrt{2},\sqrt{2}\right]\)

\(t^2=1+sin2a\Rightarrow sin2a=t^2-1\)

Do đó phương trình trên trở thành:

\(t=1-\frac{1}{2}\left(t^2-1\right)\Leftrightarrow2t=3-t^2\)

\(\Leftrightarrow t^2+2t-3=0\Leftrightarrow t=1,t=-3\)

\(t\in\left[-\sqrt{2},\sqrt{2}\right]\)nên chỉ nhân t=1

\(\Rightarrow cos\left(a-\frac{\eta}{4}\right)=\frac{\sqrt{2}}{2}=cos\frac{\eta}{4}\)

\(\Leftrightarrow a-\frac{\eta}{4}=\pm\frac{\eta}{4}+k2\eta\)

\(\Leftrightarrow a=k2\eta\)hay \(a=\frac{\eta}{2}+k2\eta\)(thỏa điều kiện câu a)

21 tháng 5 2017

Đáp án đúng : C

NV
20 tháng 1 2021

\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho

\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)

\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)

Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)

TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)

TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)

10 tháng 1 2017

Đáp án đúng : B

12 tháng 12 2017

Đáp án đúng : C

19 tháng 7 2017

Đáp án đúng : A