Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(y'=x^2-x\left(sina+cosa\right)+\frac{3}{4}sin2a\)
Để y có cực đại và cực tiểu thì y' đổi dấu hai lần, tức là:
\(\Delta=\left(sina+cosa\right)^2-3sin2a>0\)
\(\Leftrightarrow1+sin2a-3sin2a>0\)
\(\Leftrightarrow sin2a< \frac{1}{2}\)
\(\Leftrightarrow\frac{5\eta}{6}+k2\eta< 2a< \frac{13\eta}{6}+k2\eta\)
\(\Leftrightarrow\frac{5\eta}{12}+k\eta< a< \frac{13\eta}{12}+k\eta\)
Tại cực trị \(y'=0\Leftrightarrow x^2-x\left(sina+cosa\right)+\frac{3}{4}sin2a=0\)(*)
(*) cho ta\(x_1+x_2=sina+cosa,x_1x_2=\frac{3}{4}sin2a\)(*)
Để \(x_1+x_2=x^2_1+x^2_2\)thì \(x_1+x_2=\left(x_1+x_2\right)^2-2x_1+x_2\)
\(\Leftrightarrow sina+cosa=\left(sina+cosa\right)^2-\frac{3}{2}sin2a\)
\(\Leftrightarrow sina+cosa=1-\frac{1}{2}sin2a\)
Đặt \(t=cosa+sina=\sqrt{2}cos\left(a-\frac{\eta}{4}\right),t\in\left[-\sqrt{2},\sqrt{2}\right]\)
\(t^2=1+sin2a\Rightarrow sin2a=t^2-1\)
Do đó phương trình trên trở thành:
\(t=1-\frac{1}{2}\left(t^2-1\right)\Leftrightarrow2t=3-t^2\)
\(\Leftrightarrow t^2+2t-3=0\Leftrightarrow t=1,t=-3\)
Vì\(t\in\left[-\sqrt{2},\sqrt{2}\right]\)nên chỉ nhân t=1
\(\Rightarrow cos\left(a-\frac{\eta}{4}\right)=\frac{\sqrt{2}}{2}=cos\frac{\eta}{4}\)
\(\Leftrightarrow a-\frac{\eta}{4}=\pm\frac{\eta}{4}+k2\eta\)
\(\Leftrightarrow a=k2\eta\)hay \(a=\frac{\eta}{2}+k2\eta\)(thỏa điều kiện câu a)
\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho
\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)
\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)
Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)
TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)
TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)
\(y'=x^2-2\left(m+2\right)x+2m+3\)
\(a+b+c=1-2m-4+2m+3=0\)
\(\Rightarrow y'=0\) luôn có nghiệm
Để hàm số có cực đại, cực tiểu \(\Leftrightarrow2m+3\ne1\Rightarrow m\ne-1\)
Khi đó ta có \(\frac{x_1+x_2}{2}=1\Leftrightarrow m+2=1\Rightarrow m=-1\)
Vậy ko tồn tại m thỏa mãn