Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Tập xác định D = R.
y' = -3x2 + 6x – 3 = -3(x – 1)2 ≤ 0, ∀x ∈ R .Vậy hàm số luôn nghịch biến trên R
Chọn A
y ' = - 3 x 2 + 6 x - 3 = - 3 ( x 2 - 2 x + 1 ) = - 3 ( x - 1 ) 2 ≤ 0 ∀x ∈ R. Hàm số luôn nghịch biến.
Đáp án A.
y = x3 – 3x2 + 3x + 2017 => y’ = 3x2 – 6x + 3 = 3(x – 1)2 ≥ 0, ∀x ∈ R
Vậy hàm số đồng biến trên tập xác định
Đáp án A.
y = x3 – 3x2 + 3x + 2017 => y’ = 3x2 – 6x + 3 = 3(x – 1)2 ≥ 0,∀x ∈ R
Vậy hàm số đồng biến trên tập xác định
Đáp án A.
y = -x3 + 3x2 – 3x + 7, suy ra y’ = -3x2 + 6x – 3 = -3(x – 1)2 ≤ 0 ∀ x ∈ R.
Vậy hàm số nghịch biến trên R
Chọn A.
TXĐ: D = R.
Do đó, hàm số đã cho nghịch biến trên R.
Chọn A
TXĐ: D = R.
Ta có y' = -3x2 + 6x - 3 = -3(x - 1)2 ≤ 0, ∀ x ∈ R
Do đó, hàm số luôn nghịch biến trên R.
Chọn A.
TXĐ: D = R.
Ta có:
Do đó, hàm số luôn nghịch biến trên R.
Đề thiếu rồi em