Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt hoành độ giao điểm của đồ thị hàm số (C) với đường thẳng d là:
\(\dfrac{x-1}{x+1}=m-x\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\g\left(x\right)=x^2+\left(2-m\right)x-m-1=0\left(1\right)\end{matrix}\right.\)
Đồ thị (C) cắt đường thẳng d tại 2 điểm phân biệt <=> pt(1) có 2 nghiệm phân biệt khác -1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\g\left(-1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+8>0\\-2\ne0\end{matrix}\right.\)
Khi đó: \(x_A,x_B\) là nghiệm của pt (1). Vì tiếp tuyến tại A và B //
\(\Rightarrow f'\left(x_A\right)=f'\left(x_B\right)\Leftrightarrow\dfrac{2}{\left(x_A+1\right)^2}=\dfrac{2}{\left(x_B+1\right)^2}\Leftrightarrow\left[{}\begin{matrix}x_A=x_B\left(loai\right)\\x_A+x_B=-2\end{matrix}\right.\)
Theo định lí Viet ta có:
\(x_A+x_B=m-2\Rightarrow m-2=-2\Leftrightarrow m=0\)
\(\left(m^2-3m-5\right)x-y-2m+19=0\)
\(\Leftrightarrow y=\left(m^2-3m-5\right)x-2m+19\)
Ta có:
\(f'\left(x\right)=-3x^2+4x-1\)
\(f'\left(2\right)=-5\)
Phương trình tiếp tuyến tại A:
\(y=-5\left(x-2\right)+3\Leftrightarrow y=-5x+13\)
Để hai đường thẳng song song:
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-5=-5\\-2m+19\ne13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m\ne6\end{matrix}\right.\)
\(\Leftrightarrow m=0\)
Trước hết chúng ta cần nói sơ đến định lý Viet cho pt bậc 3:
Pt bậc 3 có dạng \(ax^3+bx^2+cx+d=0\) có 3 nghiệm \(x_1;x_2;x_3\) thì:
\(x_1+x_2+x_3=-\dfrac{b}{a}\)
Giả sử tọa độ B có dạng \(B\left(x_B;y_B\right)\) và pt đường thẳng d qua B có dạng:
\(y=ax+b\)
Pt hoành độ giao điểm d và (C):
\(x^3-3x^2+2=ax+b\)
\(\Leftrightarrow x^3-3x^2-ax+2-b=0\) (1)
Do d tiếp xúc (C) tại A (có hoành độ giao điểm là hoành độ của A bằng \(x_0\)) và cắt (C) tại B (có hoành độ giao điểm là hoành độ của B) nên \(x_0\) là nghiệm kép và \(x_B\) là nghiệm đơn của (1)
Hay nói cách khác, \(x_0;x_0;x_B\) là 3 nghiệm của (1)
Theo hệ thức Viet: \(x_0+x_0+x_B=3\Leftrightarrow x_B=3-2x_0\)
\(B\in\left(C\right)\Rightarrow y_B=\left(3-x_0\right)^3-3\left(3-x_0\right)^2+2=-x_0^3+6x_0^2-9x_0+2\)
Vậy tọa độ B có dạng: \(B\left(3-x_0;-x_0^3+6x_0^2-9x_0+2\right)\)
Gọi x 0 , y 0 là tọa độ tiếp điểm của đồ thị (C ) và tiếp tuyến ∆.
- Đường thẳng d :
- Vì tiếp tuyến ∆ // d nên tiếp tuyến ∆ có hệ số góc k= 9.
- Theo 4) có hai tiếp tuyến có hệ số góc k = 9 là:
y = 9x – 4 và y = 9x + 28.
Gọi điểm cố định có tọa độ \(x_0;y_0\Rightarrow\) với mọi M ta có:
\(x_0^4-y_0+1-m\left(x_0^2-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-4=0\\x_0^4-y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(2;17\right)\\B\left(-2;17\right)\end{matrix}\right.\)
\(y'=4x^3-2mx\) \(\Rightarrow\left\{{}\begin{matrix}y'\left(2\right)=32-4m\\y'\left(-2\right)=-32+4m\end{matrix}\right.\)
Tiếp tuyến tại A: \(y=\left(32-4m\right)\left(x-2\right)+17=\left(32-4m\right)x+8m-47\)
Tiếp tuyến tại B: \(y=\left(4m-32\right)\left(x+2\right)+17=\left(4m-32\right)x+8m-47\)
Hai tiếp tuyến song song khi: \(\left\{{}\begin{matrix}32-4m=4m-32\\8m-17\ne8m-17\end{matrix}\right.\)
Không tồn tại m thỏa mãn
Chọn D.
Ta có: y’ = -3x2 + 6x. Lấy điểm M(xo; yo) ∈ (C).
Tiếp tuyến tại Msong song với đường thẳng y = -9x suy ra y’(xo) = -9
Với xo = -1 ⇒ yo = 2 ta có phương trình tiếp tuyến: y = -9x - 7
Với xo = 3 ⇒ yo = -2 ta có phương trình tiếp tuyến: y = -9x + 25
Vậy có 2 tiếp tuyến thỏa mãn.
- Tập xác định: D = R
- Đạo hàm: y ’ = 3 x 2 – 6 x
- Do tiếp tuyến Δ song song với đường thẳng (d): y = 9x + 10 nên hệ số góc của tiếp tuyến là:
- Ứng với 2 giá trị x 0 ta viết được hai phương trình tiếp tuyến thỏa mãn bài.
Chọn C.
Chọn B.