K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2021

Pt hoành độ giao điểm của đồ thị hàm số (C) với đường thẳng d là:

\(\dfrac{x-1}{x+1}=m-x\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\g\left(x\right)=x^2+\left(2-m\right)x-m-1=0\left(1\right)\end{matrix}\right.\)

Đồ thị (C) cắt đường thẳng d tại 2 điểm phân biệt <=> pt(1) có 2 nghiệm phân biệt khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\g\left(-1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+8>0\\-2\ne0\end{matrix}\right.\)

Khi đó: \(x_A,x_B\) là nghiệm của pt (1). Vì tiếp tuyến tại A và B //

\(\Rightarrow f'\left(x_A\right)=f'\left(x_B\right)\Leftrightarrow\dfrac{2}{\left(x_A+1\right)^2}=\dfrac{2}{\left(x_B+1\right)^2}\Leftrightarrow\left[{}\begin{matrix}x_A=x_B\left(loai\right)\\x_A+x_B=-2\end{matrix}\right.\)

Theo định lí Viet ta có: 

\(x_A+x_B=m-2\Rightarrow m-2=-2\Leftrightarrow m=0\)

NV
23 tháng 4 2022

\(\left(m^2-3m-5\right)x-y-2m+19=0\)

\(\Leftrightarrow y=\left(m^2-3m-5\right)x-2m+19\)

Ta có: 

\(f'\left(x\right)=-3x^2+4x-1\)

\(f'\left(2\right)=-5\)

Phương trình tiếp tuyến tại A:

\(y=-5\left(x-2\right)+3\Leftrightarrow y=-5x+13\)

Để hai đường thẳng song song: 

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-5=-5\\-2m+19\ne13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m\ne6\end{matrix}\right.\)

\(\Leftrightarrow m=0\)

NV
17 tháng 12 2020

Trước hết chúng ta cần nói sơ đến định lý Viet cho pt bậc 3:

Pt bậc 3 có dạng \(ax^3+bx^2+cx+d=0\) có 3 nghiệm \(x_1;x_2;x_3\) thì:

\(x_1+x_2+x_3=-\dfrac{b}{a}\)

Giả sử tọa độ B có dạng \(B\left(x_B;y_B\right)\)  và pt đường thẳng d qua B có dạng: 

\(y=ax+b\)

Pt hoành độ giao điểm d và (C):

\(x^3-3x^2+2=ax+b\)

\(\Leftrightarrow x^3-3x^2-ax+2-b=0\) (1)

Do d tiếp xúc (C) tại A (có hoành độ giao điểm là hoành độ của A bằng \(x_0\)) và cắt (C) tại B (có hoành độ giao điểm là hoành độ của B) nên \(x_0\) là nghiệm kép và \(x_B\) là nghiệm đơn của (1)

Hay nói cách khác, \(x_0;x_0;x_B\) là 3 nghiệm của (1)

Theo hệ thức Viet: \(x_0+x_0+x_B=3\Leftrightarrow x_B=3-2x_0\)

\(B\in\left(C\right)\Rightarrow y_B=\left(3-x_0\right)^3-3\left(3-x_0\right)^2+2=-x_0^3+6x_0^2-9x_0+2\)

Vậy tọa độ B có dạng: \(B\left(3-x_0;-x_0^3+6x_0^2-9x_0+2\right)\)

18 tháng 12 2020

undefined

10 tháng 5 2018

Gọi x 0 , y 0  là tọa độ tiếp điểm của đồ thị (C ) và tiếp tuyến ∆.

- Đường thẳng d :

   Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 3)

- Vì tiếp tuyến ∆ // d nên tiếp tuyến ∆ có hệ số góc k= 9.

- Theo 4) có hai tiếp tuyến có hệ số góc k = 9 là:

   y = 9x – 4 và y = 9x + 28.

NV
21 tháng 7 2021

Gọi điểm cố định có tọa độ \(x_0;y_0\Rightarrow\) với mọi M ta có:

\(x_0^4-y_0+1-m\left(x_0^2-4\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-4=0\\x_0^4-y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(2;17\right)\\B\left(-2;17\right)\end{matrix}\right.\)

\(y'=4x^3-2mx\) \(\Rightarrow\left\{{}\begin{matrix}y'\left(2\right)=32-4m\\y'\left(-2\right)=-32+4m\end{matrix}\right.\)

Tiếp tuyến tại A: \(y=\left(32-4m\right)\left(x-2\right)+17=\left(32-4m\right)x+8m-47\)

Tiếp tuyến tại B: \(y=\left(4m-32\right)\left(x+2\right)+17=\left(4m-32\right)x+8m-47\)

Hai tiếp tuyến song song khi: \(\left\{{}\begin{matrix}32-4m=4m-32\\8m-17\ne8m-17\end{matrix}\right.\)

Không tồn tại m thỏa mãn

8 tháng 1 2018

Chọn D.

Ta có: y’ = -3x2 + 6x. Lấy điểm M(xo; yo) (C).

Tiếp tuyến tại Msong song với đường thẳng y = -9x suy ra y’(xo) = -9

Với x = -1 yo = 2 ta có phương trình tiếp tuyến: y = -9x - 7

Với x = 3 yo = -2 ta có phương trình tiếp tuyến: y = -9x + 25

Vậy có 2 tiếp tuyến thỏa mãn.

13 tháng 7 2021

có 1 thôi nha bạn tại có 1 đt trùng r

16 tháng 4 2018

Chọn C.

17 tháng 8 2019

- Tập xác định: D = R

- Đạo hàm:  y ’ = 3 x 2 – 6 x

- Do tiếp tuyến Δ song song với đường thẳng (d): y = 9x + 10 nên hệ số góc của tiếp tuyến là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)

- Ứng với 2 giá trị x 0  ta viết được hai phương trình tiếp tuyến thỏa mãn bài.

Chọn C.