Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{2.\ln x}} - {e^{2.\ln {x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{2.\ln {x_0}}}.\left( {{e^{2\ln x - 2\ln {x_0}}} - 1} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^2\left( {{e^{2.\ln x - 2\ln {x_0}}} - 1} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^2\left( {2\ln x - 2\ln {x_0}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {\frac{x}{{{x_0}}}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{{x_0}}}\\ = 2x_0^2.\frac{1}{{{x_0}}} = 2x\\ \Rightarrow \left( {{x^2}} \right)' = 2x\end{array}\)
b) Dự đoán đạo hàm của hàm số \(y = {x^n}\) tại điểm x bất kì: \(y' = n.{x^{n - 1}}\)
a. \(y'\left(x_0\right)=-2x_0+3\)
b. phương trình tiếp tuyến tại x0 =2 là
\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=-\left(x-2\right)+0\text{ hay }y=-x+2\)
c.\(y_0=0\Rightarrow\orbr{\begin{cases}x_0=1\\x_0=2\end{cases}\Rightarrow PTTT\orbr{\begin{cases}y=x-1\\y=-x+2\end{cases}}}\)
d. vì tiếp tuyến vuông góc với đường thẳng có hệ số góc bằng 1 nên tiếp tuyến có hệ số góc = -1
hay \(-2x_0+3=-1\Leftrightarrow x_0=2\Rightarrow PTTT:y=-x+2\)
a: \(y=-x^2+3x-2\)
=>\(y'=-\left(2x\right)+3\cdot1\)
=>y'=-2x+3
=>\(f'\left(x_0\right)=-2\cdot x_0+3\)
b: \(f'\left(2\right)=-2\cdot2+3=-4+3=-1\)
\(f\left(2\right)=-2^2+3\cdot2-2=0\)
Phương trình tiếp tuyến của (P) tại điểm có hoành độ x=2 là:
\(y-f\left(2\right)=f'\left(2\right)\left(x-2\right)\)
=>\(y-0=-1\left(x-2\right)=-x+2\)
=>y=-x+2
c: Đặt y=0
=>\(-x^2+3x-2=0\)
=>\(x^2-3x+2=0\)
=>(x-2)(x-1)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
TH1: x=2
\(f'\left(2\right)=-2\cdot2+3=-1;f\left(2\right)=-2^2+3\cdot2-2=0\)
Phương trình tiếp tuyến tại điểm có hoành độ x=2 là:
y-f(2)=f'(2)(x-2)
=>y-0=-1(x-2)
=>y=-x+2
TH2: x=1
\(f'\left(1\right)=-2\cdot1+3=1\)
f(1)=0
Phương trình tiếp tuyến tại điểm có hoành độ x=1 là:
y-f(1)=f'(1)(x-1)
=>y-0=1(x-1)
=>y=x-1
d: Gọi phương trình tiếp tuyến cần tìm là (d): y=ax+b(a<>0)
Vì (d) vuông góc với y=x+3 nên a*1=-1
=>a=-1
=>y=-x+b
=>f'(x)=-1
=>-2x+3=-1
=>-2x=-4
=>x=2
f(2)=-2^2+3*2-2=0
f'(2)=-1
Phương trình tiếp tuyến là:
y-f(2)=f'(2)(x-2)
=>y-0=-1(x-2)
=>y=-x+2
\(\begin{array}{c}f'\left( { - 1} \right) = \mathop {\lim }\limits_{x \to - 1} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \frac{{ - {x^2} + 2x + 1 + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \frac{{ - {x^2} + 2x + 3}}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to - 1} \frac{{\left( {x + 1} \right)\left( {3 - x} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \left( {3 - x} \right) = 3 + 1 = 4\end{array}\)
Vậy \(f'\left( { - 1} \right) = 4\)
a)Giả sử Δx là số gia của đối số tại xo bất kỳ. Ta có:
b)Giả sử Δx là số gia của đối số tại xo bất kỳ. Ta có:
\(\begin{array}{l}f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^{\frac{1}{2}}} - x_0^{\frac{1}{2}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{\frac{1}{2}.\ln x}} - {e^{\frac{1}{2}.\ln {x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{\frac{1}{2}.\ln {x_0}}}.\left( {{e^{\frac{1}{2}\ln x - \frac{1}{2}\ln {x_0}}} - 1} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^{\frac{1}{2}}\left( {{e^{\frac{1}{2}.\ln x - \frac{1}{2}\ln {x_0}}} - 1} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^{\frac{1}{2}}\left( {\frac{1}{2}\ln x - \frac{1}{2}\ln {x_0}} \right)}}{{x - {x_0}}} = \frac{1}{2}x_0^{\frac{1}{2}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {\frac{x}{{{x_0}}}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}}\\ = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = \frac{1}{2}x_0^{\frac{1}{2}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = \frac{1}{2}x_0^{\frac{1}{2}}\mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{{x_0}}} = \frac{1}{2}x_0^{\frac{1}{2}}.\frac{1}{{{x_0}}}\\ \Rightarrow f'\left( 1 \right) = \frac{1}{2}{.1^{\frac{1}{2}}}.1 = \frac{1}{2}\end{array}\)
tham khảo:
y′(x0)=\(lim_{x\rightarrow x_0}\)\(\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)
=\(lim_{x\rightarrow x_0}\)\(\dfrac{\sqrt{x}-\sqrt{x_0}}{\left(\sqrt{x}-\sqrt{x_0}\right).\left(\sqrt{x}+\sqrt{x_0}\right)}\)
=\(lim_{x\rightarrow x_0}\)\(\dfrac{1}{\sqrt{x}+\sqrt{x_0}}\)
=\(\dfrac{1}{\sqrt{x}+\sqrt{x_0}}\)\(=\dfrac{1}{2\sqrt{x_0}}\)
1) \(f\left(x\right)=2x-5\)
\(f'\left(x\right)=2\)
\(\Rightarrow f'\left(4\right)=2\)
2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)
\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)
3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)
\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)
\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)
\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)
\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)
\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)
\(\begin{array}{l}f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\cos x - \cos {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 2\,.\,\sin \frac{{x + {x_0}}}{2}.\sin \frac{{x - {x_0}}}{2}}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 2.\frac{{x - {x_0}}}{2}.\sin \frac{{x + {x_0}}}{2}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \,\left( { - \sin \frac{{x + {x_0}}}{2}} \right) = - \sin \frac{{2{x_0}}}{2} = - \sin {x_0}\\ \Rightarrow f'(x) = (\cos x)' = - \sin x\end{array}\)
a) Ta có: \(f'\left( x \right) = \left( {{x^{22}}} \right)' = 22.{x^{21}}\)
b) Đạo hàm của hàm số tại điểm \({x_0} = - 1\) là: \(f'\left( { - 1} \right) = 22.{\left( { - 1} \right)^{21}} = - 22\)