Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàng độ giao điểm của (d) và (d') là nghiệm phương trình
2x - 1 + 2m = -x - 2m
<=> 3x = - 4m + 1
Để (d) cắt (d') tại điểm có hoành độ dương
<=> -4m + 1 > 0
<=> m < 1/4
Vậy m < 1/4
b: Vì (d')//(d) nên a=2
Vậy: (d'): y=2x+b
Thay x=2 và y=3 vào (d'), ta được:
b+4=3
hay b=-1
Lời giải:
a. Để hàm số nghịch biến trên R thì:
$a+2<0$
$\Leftrightarrow a< -2$
b.
Để $(d)$ đi qua $M(-1;-4)$ thì:
$y_M=(a+2)x_M-a+1$
$\Leftrightarrow -4=(a+2)(-1)-a+1$
$\Leftrightarrow a=\frac{3}{2}$
2:
a: Thay x=1 vào (P), ta được:
\(y=\dfrac{1^2}{2}=\dfrac{1}{2}\)
Thay x=1 và y=1/2 vào (D), ta được:
\(m-1=\dfrac{1}{2}\)
hay m=3/2
b: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2+x-m=0\)
\(\text{Δ}=1^2-4\cdot\dfrac{1}{2}\cdot\left(-m\right)=2m+1\)
Để (D) cắt (P) tại hai điểm phân biệt thì 2m+1>0
hay m>-1/2
c: Để (D) tiếp xúc với (P) thì 2m+1=0
hay m=-1/2
b: Để (d")//(d) thì \(2-m^2=\dfrac{1}{2}\)
\(\Leftrightarrow m^2=\dfrac{3}{2}\)
hay \(m=\pm\dfrac{\sqrt{6}}{2}\)