K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

Ta có  đạo  hàm y’ = 3x2- 6( m+ 1) x+ 12m.

Hàm số có hai cực trị khi và chỉ khi y’ = 0  có hai nghiệm phân biệt

Hay (m-1) 2> 0   suy ra  m≠1 ( *)

Khi đó hai điểm cực trị là A( 2; 9m) : B( 2m; -4m3+ 12m2-3m+ 4).

Tam giác ABC nhận O làm trọng tâm 

⇔ 2 + 2 m - 1 = 0 - 4 m 3 + 12 m 2 + 6 m + 4 - 9 2 = 0 ⇔ m = - 1 2   t h ỏ a   ( * ) .

Chọn A.

22 tháng 4 2016

Ta có \(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow x=0\) hoặc \(x^2=m\)

Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow\) phương trình y' = 0 có 3 nghiệm phân biệt và y' đổi dấu khi x đi qua các nghiệm đó <=> m > 0. Khi đó 3 điểm cực trị của đồ thị hàm số là :

\(A\left(0;m-1\right);B\left(-\sqrt{m};m^2+m-1\right);C\left(\sqrt{m};-m^2+m-1\right)\)

a) Ta có \(S_{\Delta ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|y_C-y_B\right|=m^2\sqrt{m}\)

              \(AB=AC=\sqrt{m^4+m};BC=2\sqrt{m}\)

              \(R=\frac{AB.AC.BC}{4S_{\Delta ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)

                                            \(\Leftrightarrow m^3-2m+1=0\Leftrightarrow m=1\) hoặc \(m=\frac{\sqrt{5}-1}{2}\)

Vậy \(m=1;m=\frac{\sqrt{5}-1}{2}\) là giá trị cần tìm

b) Vì B, C đối xứng nhau qua trục tung nên BC luôn vuông góc OA

Do đó O là trực tâm tam giác ABC khi và chỉ khi \(\overrightarrow{OB}.\overrightarrow{AC}=0\)

\(\overrightarrow{OB}\left(-\sqrt{m};-m^2+m-1\right);\overrightarrow{AC}\left(\sqrt{m};-m^2\right)\)

Suy ra \(-m-m^2\left(-m^2+m-1\right)=0\Leftrightarrow m\left(-m^3+m^2-m+1\right)=0\)

                                                             \(\Leftrightarrow m\left(m-1\right)\left(m^2+1\right)=0\Leftrightarrow m=0\) hoặc m = 1

Vậy m = 0 hoặc m = 1 là giá trị cần tìm

c) Rõ ràng tam giác ABC cân tại A và truyên tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm  của tam giác ABC

<=> \(y_A+2y_B=0\)

\(\Leftrightarrow m-1+2\left(-m^2+m-1\right)=0\)

\(\Leftrightarrow2m^2-3m+3=0\) vô nghiệm

Vậy không tồn tai giá trị m thỏa mãn yêu cầu bài toán

14 tháng 1 2020

bn ơi cho mk hỏi cái công thức tính S tam giác ABC=1/2|yB-yA|.|yC-yB| ở đâu vậy ạ

 

12 tháng 6 2017

Chọn D

T a   c ó   y ' = 3 x 2 - 6 ( m + 1 ) x + 12 m

Hàm số có hai cực trị  ⇔ y ' = 0  có hai nghiệm phân biệt

A ( 2 ; 9 m ) ,   B ( 2 m - 4 m 3 + 12 m 2 - 3 m + 4 )

ABC nhận O làm trọng tâm

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

Bài 1:

\(y=x^4+2(m-4)x^2+m+5\)

\(\Rightarrow y'=4x^3+4(m-4)x\)

\(y'=0\Leftrightarrow x(x^2+m-4)=0\Leftrightarrow \left[\begin{matrix} x=0\\ x^2=4-m\end{matrix}\right.\)

Để đths có 3 điểm cực trị thì \(y'=0\) phải có ít nhất 3 nghiệm pb. Khi đó \(4-m>0\Rightarrow m< 4\)

Khi đó, các điểm cực trị là:

\((0; m+5)\)

\((\sqrt{4-m}, -m^2+9m-11)\)

\((-\sqrt{4-m}, -m^2+9m-11)\)

Nếu $O$ là trọng tâm:

\(\left\{\begin{matrix} \frac{0+\sqrt{4-m}-\sqrt{4-m}}{3}=x_O=0\\ \frac{m+5+2(-m^2+9m-11)}{3}=y_O=0\end{matrix}\right.\)

\(\Leftrightarrow -2m^2+19m-17=0\Rightarrow \left[\begin{matrix} m=\frac{17}{2}\\ m=1\end{matrix}\right.\)

Vì $m< 4$ nên $m=1$

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

Bài 2:
\(y'=4x^3-4mx=0\Leftrightarrow \left[\begin{matrix} x=0\\ x^2=m\end{matrix}\right.\)

Để hàm bậc 4 có 3 cực trị thì $y'=0$ phải có 3 nghiệm pb, suy ra $m>0$

Khi đó: \(y'=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=\sqrt{m}\\ x=-\sqrt{m}\end{matrix}\right.\)

Ba điểm cực trị:

\(A(0; m-1)\)

\(B(\sqrt{m}; -m^2+m-1)\)

\(C(-\sqrt{m}; -m^2+m-1)\)

Suy ra:

\(\overrightarrow{BC}=(-2\sqrt{m};0)\); \(\overrightarrow{AB}=(\sqrt{m}; -m^2)\)

\(\overrightarrow{OA}=(0;m-1)\); \(\overrightarrow{OC}=(-\sqrt{m}; -m^2+m-1)\)

Vì $O$ là trực tâm nên : \(\left\{\begin{matrix} \overrightarrow{BC}.\overrightarrow{OA}=0\\ \overrightarrow{AB}.\overrightarrow{OC}=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} -2\sqrt{m}.0+0.(m-1)=0\\ -m+m^2(m^2-m+1)=0\end{matrix}\right.\)

\(\Rightarrow m(m^3-m^2+m-1)=0\)

\(\Leftrightarrow m(m^2+1)(m-1)=0\Rightarrow m=1\)\(m>0\)

Vậy.......

23 tháng 4 2016

Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow y'=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3-2\left(3m+1\right)x=0\) có 3 nghiệm phân biệt \(\Leftrightarrow m>-\frac{1}{3}\) (1)

Khi đó 3 điểm cực trị của đồ thị  là \(A\left(0;2m+2\right);B\left(-\sqrt{6m+2};-9m^2-4m+1\right);C\left(\sqrt{6m+2};-9m^2-4m+1\right)\)

Rõ ràng tam giác ABC cân tại A và trung tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm của tam giác ABC \(\Leftrightarrow y_A+2y_B=0\)

Hay \(2m+2+2\left(-9m^2-4m+1\right)=0\Leftrightarrow9m^2+3m-2=0\)

Suy ra \(m=-\frac{2}{3}\) hoặc \(m=\frac{1}{3}\)

Kết hợp với (1) suy ra giá trị của m là \(m=\frac{1}{3}\)

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

5 tháng 2 2018

Chọn D

Khi đó đồ thị hàm số có 3 điểm cực trị là:

Vì B, C đối xứng với nhau qua trục tung nên  B C ⊥ O A

Do đó O là trực tâm tam giác:

Kết hợp điều kiện, vậy m = 1 là giá trị cần tìm

29 tháng 8 2018

Chọn D

y ' = 4 x 3 - 4 m x

Hàm số có 3 điểm cực trị  ⇔ m > 0

Khi đó đồ thị hàm số có 3 điểm cực trị là

A (0;m-1)

B ( m ; m 2 + m - 1 )

C ( - m ; m 2 + m - 1 )

Vì B,C đối xứng nhau qua trục tung nên  B C ⊥ O A

Do đó O là trực tâm tam giác ABC

Với  O B ⇀ = ( m , m 2 + m - 1 ) , A C ⇀ = ( - m , m 2 )

Vậy m = 1 là gtct

28 tháng 9 2018

+ Đạo hàm y’  = 4x3- 4mx

Hàm số có 3 điểm cực trị khi và  chỉ khi m≠0.

+ Khi đó đồ thị hàm số có 3 điểm cực trị là:

+ Vì B,C đối xứng nhau qua trục tung nên BC và OA vuông góc với nhau. 

Do đó O là trực tâm tam giác ABC  khi và chỉ khi OB vuông góc AC hay 

Với 

Kết hợp với điều kiện m ≠ 0 thì m = 1 là giá trị cần tìm.

Chọn B.