Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Hàm bậc 4 trùng phương có ba điểm cực trị ⇒ a b < 0 ⇒ 9 m − 4 < 0 ⇔ m − 4 < 0 ⇔ m < 4
Áp dụng công thức giải nhanh ba điểm cực trị tạo thành tam giác đều thì:
24 a + b 3 = 0 ⇔ 24.9 + m − 4 3 = 0 ⇔ m = − 2
Vậy giá trị m 0 gần giá trị -1 nhất
Đáp án là B.
+ Hàm số có 3 cực trị khi − 2 m + 1 < 0 ⇔ m > − 1. (1)
+ y ' = 4 x 3 − 4 m + 1 x = 0 ⇔ x = 0 x = ± m + 1
Các điểm cực trị A, B, C của đồ thị là: A 0 ; m ;
B m + 1 ; − m 2 − m − 1 ; C − m + 1 ; − m 2 − m − 1
+ O A = B C ⇔ m = 2 m + 1 ⇔ m 2 − 4 m − 4 = 0
⇔ m = 2 ± 2 2 .
Đáp án D.
Ta có: y ' = x 3 − 4 m x = 0 ⇔ x = 0 x 2 = m
Để hàm số có 3 điểm cực trị thì m > 0.
Khi đó tọa độ điểm cực trị là:
A 0 ; − 2 m 2 + m 4 ; B m ; m 4 − 3 m 2 ; C − m ; m 4 − 3 m 2
Do ABCD là hình thoi nên A B = B D ⇔ m + m 4 = m + m 4 − 3 m 2 + 3 2
⇔ m 2 = m 4 − 3 m 2 + 3 ⇔ m 4 − 4 m 2 + 3 = 0 ⇔ m = 1 m = 3 D o m > 0 .
Đáp án B
Phương pháp:
Giải phương trình y’ = 0 tìm các điểm cực trị B, C của đồ thị hàm số và tính diện tích tam giác OBC.
Cách giải: TXĐ: D = R
Ta có:
Đáp án B
Ta có: y ' = 4 x 3 - 4 m 2 x = 0 ⇔ [ x = 0 x = ± m . Hàm số có 3 cực trị khi m ≠ 0 . Khi đó A ( 0 ; 2 m ) ; B ( m ; 2 m - m 4 ) ; C - m ; 2 m - m 4 O,A,B,C là các đỉnh của một hình thoi suy ra O A = A B ⇔ m 2 + 2 m - m 4 2 = m 2 + m 8 ⇔ 4 m 2 - 4 m 5 = 0 ⇒ m = 1 .
Đáp án là A