Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ycbt ⇔ đường thẳng d đi qua điểm uốn của đồ thị C (*)
Ta có:
f ' x = 3 x 2 − 6 x ⇒ f ' ' x = 6 x − 6 = 0 ⇔ x = 1
suy ra điểm uốn I 1 ; − 3
Do đó * ⇔ − 3 = 1 + m ⇔ m = − 4 ∈ − 5 ; − 3
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
Đáp án A
Phương trình hoành độ giao điểm:
x 3 + 2 m x 2 + 3 ( m − 1 ) x+ 2 = − x+ 2 ⇔ x 3 + 2 m x 2 + ( 3 m − 2 ) x= 0 ⇔ x= 0 x 2 + 2 m x + ( 3 m − 2 ) = 0
+) Với m= -1 ba giao điểm là A 0 ; 2 , B 1 − 6 ; 1 + 6 , C 1 + 6 ; 1 − 6
MB = 16 + 4 6 ; MC = 16 − 4 6 ; BC = 4 3
Diện tích tam giác MBC=2 6
+) Với m= 4 ba giao điểm là A 0 ; 2 , B − 4 + 6 ; − 2 + 6 , C − 4 − 6 ; − 2 − 6
MB = 70 − 20 6 ; MC = 70 + 20 6 ; BC = 4 3
Diện tích tam giác MBC ≈ 9,1
Vậy m=-1
Đáp án C
Phương trình hoành độ giao điểm của (C) và d là
x 3 − m x 2 + 3 x + 1 = x + 1 ⇔ x 3 − m x 2 + 2 x = 0 ⇔ x x 2 − m x + 2 = 0 = 0 ⇔ x = 0 x 2 − m x + 2 = 0 = 0 *
Để (C) cắt d tại 3 điểm phân biệt ⇔ * có 2 nghiệm phân biệt khác 0 ⇔ m > 2 2 m < − 2 2
Gọi A 0 ; 1 , B x 1 ; y 1 , C x 2 ; y 2 là tọa độ giao điểm của (C) và d
Với x 1 ; x 2 là nghiệm phương trình * , suy ra x + x 2 = m x 1 . x 2 = 2 ⇒ x 1 − x 2 2 = m 2 − 8
Khoảng cách từ M đến BC là:
d M ; Δ = 4 2 ⇒ S M B C = 1 2 d M ; Δ . B C = 4 2 ⇒ B C = 4
Mà:
B C = x 2 − x 1 2 + y 2 − y 1 2 = 2 x 2 − x 1 2 = 2 m 2 − 16 ⇒ 2 m 2 − 16 = 16 ⇒ m = ± 4
Vậy m 1 2 + m 2 2 = 4 2 + − 4 2 = 32 ∈ 31 ; 33