K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Chọn D

Hàm số có 2 điểm cực trị x1; x2 ⇔ Δ' > 0 ⇔ 4 - (m + 2) > 0 ⇔ m < 2

 

Chia y cho y’ ta được : 

Suy ra : Phương trình đường thẳng đi qua hai điểm cực trị là: y = (m - 2)(2x + 1).

Điểm cực trị tương ứng : A(x1;(m - 2)(2x1 + 1)) và B(x2;(m - 2)(2x2 + 1))

Có: 

30 tháng 3 2018

Chọn D

Hàm số có 2 điểm cực trị  x 1 , x 2

Chia y cho y’ ta được :

Điểm cực trị tương ứng :

Với x 1 + x 2 = 4 x 1 x 2 = m + 2 nên  y 1 y 2 = ( m - 2 ) 2 ( 4 m + 17 )

Hai cực trị cùng dấu  ⇔ y 1 y 2 > 0

Kết hợp đk :  - 17 4 < m < 2

NV
7 tháng 10 2021

\(m=0\) không thỏa mãn

Với \(m\ne0\):

\(y'=4mx^3-2\left(m+1\right)x=2x\left(2mx^2-\left(m+1\right)\right)\)

Hàm có 3 cực trị khi:

\(\dfrac{m+1}{m}>0\Rightarrow\left[{}\begin{matrix}m< -1\\m>0\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m< -1\\m>0\end{matrix}\right.\)

6 tháng 6 2023

Ta có:

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m,\forall x\in R\)

Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:

\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)

=> B.

23 tháng 8 2017

+  Ta có đạo hàm y’ = 3x2- 12x+ 3( m+ 2)

 

Phương trình y’ = 0 khi 3x2- 12x+ 3( m+ 2) = 0

+ Hàm số có 2 điểm cực trị x1; x2  Δ’ > 0 m < 2  

+ Chia y cho y’ ta được :y= 1/3.y’( x-2) + (m-2) (2x+ 1)  

Tọa độ 2 điểm cực trị tương ứng : A( x; ( m-2) ( 2x1+ 1) ) và B( x; ( m-2) ( 2x2+ 1) )

+ ta có ; y1.y2= ( m-2) 2( 4x1x2+ 2( x1+ x2) + 1)

Với  nên: y1y2= ( m-2) 2( 4m+ 17)  

Hai cực trị cùng dấu khi và chỉ khi y1.y2> 0 hay ( m-2) 2( 4m+ 17) > 0

⇔ m > - 17 4 m ≠ 2    

Kết hợp điều kiện ta được  : -17/4< m< 2; mà m nguyên nên m= -4; -3; ...0; 1

Có tất cả 6 giá trị nguyên của m thỏa mãn đầu bài.

Chọn C.

NV
3 tháng 4 2021

Với \(m=-1\) thỏa mãn

Với \(m\ne-1\) hàm chỉ có cực tiểu mà không có cực đại khi:

\(\left\{{}\begin{matrix}m+1>0\\-m\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow-1< m\le0\)

Vậy \(-1\le m\le0\)