K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2019

17 tháng 1 2019

27 tháng 4 2018

Đáp án C

Ta có:  

Suy ra PTTT của (C) tại M là  

Khi đó PT hoành độ giao điểm của (C) và là:  

 

15 tháng 11 2017

+Ta có đạo hàm y’ = 3x2- 6mx+ 3( m+ 1)  .

 Do K thuộc ( C)  và có hoành độ bằng -1, suy ra K( -1; -6m-3)

Khi đó tiếp tuyến tại K  có phương trình

∆: y= ( 9m+ 6) x+ 3m+ 3

Đường thẳng ∆ song song với đường thẳng d

⇒ 3 x + y = 0 ⇔ y = - 3 x ⇔ 9 m + 6 = - 3 3 m + 3 ≠ 0 ⇔ m = - 1 m ≠ - 1

Vậy không tồn tại m thỏa mãn đầu bài.

Chọn D.

Câu 1 : Cho hàm số y = x3 - 3m2x2 - m3 có đồ thị (C) . Tìm tất cả các giá trị thực của tham số m để tiếp tuyến của đồ thị (C) tại điểm có hoành độ x0 = 1 song song với đường thẳng d = -3xA. m = 1B. m = -1C. D. Không có giá trị của mCâu 2 : Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x4 - 2x2 + 3 trên [0;2] là:A. M = 11 , m = 3B. M = 5 , m = 2C. M = 3 , m = 2D. M = 11 , m = 2Câu 3 : Cho hình chóp S.ABC có đáy là tam...
Đọc tiếp

Câu 1 : Cho hàm số y = x3 - 3m2x2 - m3 có đồ thị (C) . Tìm tất cả các giá trị thực của tham số m để tiếp tuyến của đồ thị (C) tại điểm có hoành độ x0 = 1 song song với đường thẳng d = -3x

A. m = 1

B. m = -1

C. Bộ Đề thi Toán lớp 12 Giữa kì 1 năm 2021 - 2022 (15 đề)

D. Không có giá trị của m

Câu 2 : Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x4 - 2x2 + 3 trên [0;2] là:

A. M = 11 , m = 3

B. M = 5 , m = 2

C. M = 3 , m = 2

D. M = 11 , m = 2

Câu 3 : Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a và thể tích bằng a3 Tính chiều cao h của hình chóp đã cho.

Bộ Đề thi Toán lớp 12 Giữa kì 1 năm 2021 - 2022 (15 đề)

Câu 4 : Hình đa diện nào dưới đây không có tâm đối xứng ?

A. Hình tứ diện đều.

B. Hình lăng trụ tam giác đều.

C. Hình bát diện đều.

D. Hình lập phương.

Câu 5 : Số đường tiệm cận của đồ thị hàm số Bộ Đề thi Toán lớp 12 Giữa kì 1 năm 2021 - 2022 (15 đề) là:

A. 4.

B. 1.

C. 2.

D. 3.

Câu 6 : Cho hàm số Bộ Đề thi Toán lớp 12 Giữa kì 1 năm 2021 - 2022 (15 đề) có đồ thị (C). Tìm các điểm M trên đồ thị (C) sao cho khoảng cách từ hai điểm A(2;4) và B(-4;-2) đến tiếp tuyến của (C) tại M là bằng nhau

Bộ Đề thi Toán lớp 12 Giữa kì 1 năm 2021 - 2022 (15 đề) giúp mik nhe r mik tick choa pls

2

Câu 1: B

Câu 2: C

Câu 3: A

Câu 4: A

Câu 5: B

Câu 6: A

15 tháng 1 2022

=)))))))

29 tháng 4 2016

Gọi k là hệ số góc của tiếp tuyến tại M, N thì \(x_M;x_N\) là nghiệm của phương trình :

\(f'\left(x\right)=k\Leftrightarrow3x^2-6x-k=0\)

Để tồn tại hai tiếp điểm M, N thì phải có \(\Delta'>0\Leftrightarrow k>-3\)

Ta có \(y=f'\left(x\right)\left(\frac{1}{3}x-\frac{1}{3}\right)-2x+2\)

Từ \(f'\left(x_M\right)=f'\left(x_N\right)=k\) suy ra phương trình đường thẳng MN là :

\(y=\left(\frac{k}{3}-2\right)x+2-\frac{k}{3}\), khi đó \(A\left(1;0\right);B\left(0;\frac{6-k}{3}\right)\)

Ta có \(AB^2=10\Leftrightarrow k=15\) (do k > -3)

Từ đó ta có 2 tiếp tuyến cần tìm là :

\(y=15x-12\sqrt{6}-15\)

\(y=15x+12\sqrt{6}-15\)

NV
4 tháng 8 2021

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)

26 tháng 8 2017

Đợi khi nào mk học đã nha!!Mk hứa mk sẽ giải bài này!!ngaingung