K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

Đáp án A

24 tháng 5 2018

27 tháng 12 2019

Đáp án C

Điều kiện: x≠2.

Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình

2 x x − 2 = x + m ⇔ 2 x x − 2 − x − m = 0 ⇔ 2 x − x 2 + 2 x − m x + 2 m x − 4 = 0 ⇔ − x 2 + 4 − m x + 2 m x − 2 = 0.

Để hai đồ thị hàm số giao nhau tại hai điểm phân biệt A,B ta có

4 − m 2 + 8 m > 0 g 2 ≠ 0 ⇔ m 2 + 16 > 0 − 4 + 8 − 2 m + 2 m ≠ 0

thỏa mãn với mọi m ∈ ℝ .

Theo bài ra ta có x A + x B + x O = 3 x A + m + x B + m + y O = 7 ⇔ 4 − m = 3 4 − m + 2 m = 5 ⇔ m = 1 .

Vậy m=1 thỏa mãn điều kiện đề bài.

19 tháng 3 2017

27 tháng 12 2019

18 tháng 5 2019

Chọn A

31 tháng 8 2018

13 tháng 8 2019

Đáp án D

PTHĐGĐ: x 2 + ( m − 3 ) x − 2 m − 1 = 0    ( * )            ĐK:  ( m − 3 ) 2 + 4 ( 2 m + 1 ) > 0

Gọi x1, x2 là 2 nghiệm phân biệt của (*) ⇒ A x 1 ; x 1 + m , B x 2 ; x 2 + m  với S = x1 + x2 = 3 – m

Gọi G là trọng tâm tam giác OAB ⇒ G x 1 + x 2 3 ; x 1 + x 2 + 2 m 3 ⇒ G S 3 ; S + 2 m 3

G ∈ ( C ) : x 2 + y 2 − 3 y = 4       

⇒ S 9 2 + ( S + 2 m ) 9 2 − ( S + 2 m ) = 4 ⇔ S 2 + ( S + 2 m ) 2 − 9 ( S + 2 m ) = 36

⇔ ( 3 − m ) 2 + ( 3 + m ) 2 − 9 ( 3 + m ) = 36 ⇔ 2 m 2 − 9 m − 45 = 0 ⇔ m = − 3    ( n ) m = 15 2    ( n )

24 tháng 2 2019

Chọn D.

Phương pháp:

Giải phương trình hoành độ giao điểm, tìm giao điểm của hai đồ thị.

Dựa vào công thức trọng tâm, xác định m.

Cách giải:

Phương trình hoành độ giao điểm của d và (C) là

Để d cắt (C) tại hai điểm phân biệt A, B thì (*) có 2 nghiệm phân biệt khác 1