K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

Đáp án: A.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

14 tháng 11 2018

a) Tập xác định: D = R\{m}

Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:

y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2

b) Tập xác định: D = R\{m}

Hàm số nghịch biến trên từng khoảng khi và chỉ khi:

y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0

[m<1m>4[m<1m>4

c) Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3

d) Tập xác định: D = R

Hàm số đồng biến trên R khi và chỉ khi:

y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3

Bạn ghi lại hàm số đi bạn

7 tháng 7 2023

rồi đấy ạ!

7 tháng 6 2021

Câu 1: Điều kiện \(D=\left(-\infty;0\right)U\left(1;+\infty\right)\)

\(y'=\frac{\sqrt{x^2-x}-x.\frac{2x-1}{2\sqrt{x^2-x}}}{x^2-x}=\frac{-x}{2\left(x^2-x\right)\sqrt{x^2-x}}\)

Ta thấy \(y'< 0\) trên \(\left(1;+\infty\right)\), suy ra hàm số nghịch biến trên \(\left(1;+\infty\right)\).

Câu 2: 

\(y'=1+\frac{2x}{\sqrt{2x^2+1}}=\frac{2x+\sqrt{2x^2+1}}{\sqrt{2x^2+1}}\)

Xét bất phương trình:

\(2x+\sqrt{2x^2+1}< 0\)

\(\Leftrightarrow\sqrt{2x^2+1}< -2x\)

\(\Leftrightarrow\hept{\begin{cases}x< 0\\2x^2+1< 4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< \frac{-\sqrt{2}}{2}\left(h\right)x>\frac{\sqrt{2}}{2}\end{cases}}\Leftrightarrow x< \frac{-\sqrt{2}}{2}\)

Vậy hàm số nghịch biến trên \(\left(-\infty;\frac{-\sqrt{2}}{2}\right)\).

25 tháng 11 2021

C

25 tháng 11 2021

C. Hàm số đồng biến trên R.     

Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)Câu 2: Xét hàm...
Đọc tiếp

Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?

\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)

\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)

Câu 2: Xét hàm số \(f\left(x\right)=-x^4+4x^2-3.\)Khẳng định nào sau đây đúng?

A. Hàm số đồng biến trong khoảng \(\left(-\infty;\sqrt{2}\right).\)

B. Hàm số đồng biến trong khoảng \(\left(-\sqrt{2};+\infty\right).\)

C. Hàm số đồng biến trong từng khoảng \(\left(-\infty;-\sqrt{2}\right)\)và \(\left(0;\sqrt{2}\right).\)

D. Hàm số đồng biến trong từng khoảng \(\left(-\sqrt{2};0\right)\)và \(\left(\sqrt{2};+\infty\right)\)

1
22 tháng 6 2019

Lần sau em đăng trong h.vn

1. \(log_{ab}c=\frac{1}{log_cab}=\frac{1}{log_ca+log_cb}=\frac{1}{\frac{1}{log_ac}+\frac{1}{log_bc}}=\frac{1}{\frac{log_ac+log_bc}{log_ac.log_bc}}=\frac{log_ac.log_bc}{log_ac+log_bc}\)

Đáp án B: 

2. \(f'\left(x\right)=-4x^3+8x\)

\(f'\left(x\right)=0\Leftrightarrow-4x^3+8x=0\Leftrightarrow x=0,x=\sqrt{2},x=-\sqrt{2}\)

Có BBT: 

x -căn2 0 căn2 f' f 0 0 0 - + - +

Nhìn vào bảng biên thiên ta có hàm số ... là đáp án C

31 tháng 3 2017

Tập xác định : D = [0 ; 2]; y' = , ∀x ∈ (0 ; 2); y' = 0 ⇔ x = 1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (0 ; 1) và nghịch biến trên khoảng (1 ; 2).

31 tháng 3 2017

Tập xác định : D = R. y' = => y' = 0 ⇔ x=-1 hoặc x=1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (-1 ; 1); nghịch biến trên các khoảng (- ; -1), (1 ; +).