K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

Đáp án D

Phương pháp:

Hàm số dạng y = a x + b c x + d luôn đồng biến hoặc nghịch biến trên từng khoảng xác định của nó.

Cách giải: Tập xác định  D = ℝ \ 1

Ta có:  y ' = − 1 + 2 x − 1 2 = 1 x − 1 2 > 0   ∀ x ∈ ℝ

Vậy hàm số đồng biến trên các khoảng  − ∞ ; 1 và  1 ; + ∞

10 tháng 11 2017

23 tháng 10 2019

Đáp án B

17 tháng 10 2019

Đáp án C

7 tháng 12 2018

Đáp án C

Có y ' = 1 x − 1 2 . Hàm số đồng biến trên tứng khoảng ( ta chỉ xét khoảng liên tục, không bị ngắt khoảng).

11 tháng 10 2017

Chọn B

19 tháng 5 2018

Đáp án C

Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒  hàm số có 3 điểm cực trị

Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒  có 3 nghiệm phân biệt

Suy ra phương trình f x = m + 2018  có nhiều nhất 4 nghiệm

Xét  y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2

Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).

22 tháng 10 2018

Đáp án D

Tại -1 hàm số không xác định nên không nghịch biến trên ( - ∞ ; 3 )  

18 tháng 1 2018

Chọn C.

Dựa vào đồ thị hàm số f ' ( x )  suy ra BBT của hàm số y = f(x)

 

Khẳng định 1, 2, 5 đúng, khẳng định 4 sai.

Xét khẳng định 3: Ta có:

f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) ⇒ f ( 3 ) - f ( 0 ) = f ( 1 ) - f ( 2 ) > 0  

Do đó f ( 3 ) > f ( 0 ) ⇒  Vậy khẳng định 3 đúng.

7 tháng 7 2017

Đáp án B

1 tháng 8 2019

Đáp án B.

Đồ thị hàm số có 2 tiệm cận, 1 tiệm cận đứng, 1 tiệm cận ngang.

Phương trình f(x) = m có 3 nghiệm thực phân biệt thì  m ∈ 1 ; 2 . 

Phương án D bị gián đoạn bởi tập xác định.

Phương án C sai vì đồ thị hàm số có dáng điệu tiến đến vô cùng.