K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

30 tháng 9 2015

ta tính \(y'=\frac{x\left(x-2\right)}{\left(x-1\right)^2}\)

giải pt y'=0

ta  có \(x\left(x-2\right)=0\) suy ra x=0 hoặc x=2

bảng bt

x y' y -2 0 1/2 2 0 0 + - -7/3 -1 -3/2

hàm số đạt giá trị lớn nhất =-1 tại x=0, đạt giá trị nhỏ nhất =-7/3 tại x=-2

4 tháng 11 2017

Đáp án B

Tập xác định: D = ℝ \ 1 2 ⇒  Hàm số y = m x + 1 2 x − 1  liên tục và đơn điệu trên 1 ; 3  

  ⇒ a . b = y 1 . y 3 = m + 1 1 . 3 m + 1 5 = 1 5

  ⇔ m + 1 3 m + 1 = 1 ⇔ 3 m 2 + 4 m = 0 ⇔ m = 0 m = − 4 3

Vậy có 2 giá trị m thỏa mãn.

30 tháng 9 2015

ta tính 

\(y'=3x^2-6x=3x\left(x-2\right)\)

giải pt y'= 0 ta có \(3x\left(x-2\right)=0\) suy ra x=0 hoặc x=2

x y' -3 0 1 2 0 0 y + -55 -1 -3 - -

nhìn vào bảng bt ta có giái trị lớn nhất của hàm số =3 khi x=0, hàm số đạt giá trị nhỏ nhất =-55 khi x=-3

30 tháng 9 2015

hàm số đạt giái trị lớn nhất =-1 khi x=0, nhỏ nhất =-55 khi x=-3

26 tháng 12 2019

1 tháng 9 2018

2 tháng 6 2019

Đáp án C.

Xét hàm số  y = x 2 - 1 x - 2  trên D, có   f ' x = 1 - 2 x x - 2 2 x 2 - 1 ;   ∀ x ∈ D .

Trên khoảng  - ∞ ; - 1 ;  có  f ' x > 0 ⇒ f x  là hàm số đồng biến trên   - ∞ ; - 1

Trên khoảng  1 ; 3 2 , có f ' x < 0 ⇒ f x  f(x) là hàm số nghịch biến trên  1 ; 3 2 . 

Dựa vào BBT, suy ra M = f 1 = 0  và m = f 3 2 = - 5 . Vậy P = M.m = 0

16 tháng 8 2018

6 tháng 10 2019

Đáp án B.

Từ

f x . f ' x = 2 x f 2 x + 1 ⇒ f x . f ' x f 2 x + 1 = 2 x ⇒ ∫ f x . f ' x f 2 x + 1 d x = ∫ 2 x d x

 (1)

Đặt  

f 2 x + 1 = t ⇒ f 2 x = t 2 − 1 ⇒ 2 f x . f ' x d x = 2 t d t ⇒ f x . f ' x d x = t d t

Suy ra   ∫ f x . f ' x f 2 x + 1 x = ∫ t d t t = ∫ d t = t + C 1 = f 2 x + 1 + C 1   ∫ 2 x d x = x 2 + C 2

Từ (1) ta suy ra  f 2 x + 1 + C 1 = x 2 + C 2   . Do   f 0 = 0 nên C 2 − C 1 = 1 .

Như vậy  

f 2 x + 1 = x 2 + C 2 − C 1 = x 2 + 1 ⇒ f 2 x = x 2 + 1 2 − 1 = x 4 + 2 x 2

⇒ f x = x 4 + 2 x 2 = x x 2 + 2 = x x 2 + 2

 (do x ∈ 1 ; 3 ).

Ta có f ' x = x 2 + 2 + x 2 x 2 + 2 = 2 x 2 + 1 x 2 + 2 > 0, ∀ x ∈ ℝ ⇒  Hàm số f x = x x 2 + 2  đồng biến trên R nên f x  cũng đồng biến trên  1 ; 3   .

Khi đó M = max 1 ; 3 f x = f 3 = 3 11  và m = min 1 ; 3 f x = f 1 = 3 .

Vậy 

P = 2 M − m = 6 11 − 3 ⇒ a = 6 ; b = 1 ; c = 0 ⇒ a + b + c = 7

 

23 tháng 7 2019

Suy ra f(t) đồng biến trên TXĐ và pt f ( t ) = 21  chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 - 2 x - y = 10 ⇒ y = 1 - 2 x ⇒ P = 16 x 2 1 - 2 x - 2 x 3 - 6 x + 2 - 1 + 2 x + 5 = - 32 x 3 + 28 x 2 - 8 x + 4 P ' = - 96 x 2 + 56 x - 8 P ' = 0 ⇔ [ x = 1 4 x = 1 3 P 0 = 4 , P 1 3 = 88 27 ,   P 1 4 = 13 4 , P 1 2 = 3 ⇒ m = 13 4 ,   M = 4 ⇒ M + 4 m = 17