Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (C) và d là:
x + 1 x - 1 = 2 x + m ⇔ x ≠ 1 f x = 2 x 2 + m - 3 - m - 1
Ta có
∆ = m 2 + 2 m + 7 > 0 ∀ m f 1 = - 2 ≠ 0
=> d luôn cắt tại hai điểm phân biệt A, B.
Gọi x 1 ; x 2 lần lượt là hoành độ các điểm A, B. Khi đó A O B ⏞ nhọn.
⇔ cos A O B ⏞ = O A 2 + O B 2 - A B 2 2 . O A . O B > 0 ⇔ O A 2 + O B 2 > A B 2 ⇔ x 1 2 + 2 x 1 + m 2 + x 2 2 + 2 x 2 + m 2 > 5 x 2 - x 1 2
Sử dụng định lí Viet và giải bất phương trình theo m ta thu được m > 5
Đáp án C
Đáp án C
Xét pt tương giao:
2 x - 1 x - 1 = x + m ⇔ 2 x - 1 - x + m x - 1 = 0 ⇔ x 2 - 3 - m x + m - 1 = 0
a + b 2 - 4 a b = 8 ⇔ 3 - m 2 - 4 1 - m = 8 ⇔ [ m = - 1 m = 3
Đáp án A
Xét phương trình hoành độ giao điểm:
x + 1 2 x + 1 = m x + m + 1 2 ⇔ 4 m x 2 + 4 m x + m − 1 = 0 1
Phương trình (1) có 2 nghiệm x A ; x B ⇔ Δ ' = 4 m 2 − 4 m m − 1 = 4 m > 0 ⇔ m > 0.
Khi đó giao điểm của 2 đồ thị là A x A ; m x A + m + 1 2 ; B x B ; m x B + m + 1 2
với x A + x B = − 1 ; x A . x B = m − 1 4 m
Ta có O A 2 + O B 2 = x A 2 + m x A + m + 1 2 2 + x B 2 + m x B + m + 1 2 2 = m 2 + 2 m + 1 2 m = 1 + 1 2 m + 1 m ≥ 1 + 1 2 .2 = 2
( vì m > 0 , theo Cauchy ta có m + 1 m ≥ 2 . Dấu bằng xảy ra khi m = 1
Chọn C.
Phương pháp: Sử dụng phương trình hoành độ giao điểm và định lý Viet.
Cách giải: Phương trình hoành độ giao điểm là
Vì a,c là nghiệm của (*) nên theo định lý Viet ta có:
Chọn D.
Phương pháp:
Xét phương trình hoành độ giao điểm, áp dụng định lí Vi-ét.
Cách giải:
Để (C) cắt d tại 2 điểm phân biệt thì phương trình (1) có hai nghiệm phân biệt khác 1