Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có đồ thị hàm số luôn có TCN y = 1
Do đó để ycbt thỏa mãn
Chọn C.
Đáp án A
Ta có: lim x → + ∞ y = 0 ⇒ đồ thị hàm số có 1 tiệm cận ngang là y = 0 .
Để đồ thị hàm số có 3 tiệm cận thì phương trình : g x = x 2 − 2 m x + m + 2 = 0 có 2 nghiệm phân biệt
x 1 > x 2 ⇔ Δ ' = m 2 − m − 2 > 0 x 1 − 1 x 2 − 1 ≥ 0 x 1 − 1 + x 2 − 1 > 0 ⇔ m + 1 m − 2 > 0 x 1 x 2 − x 1 + x 2 + 1 ≥ 0 x 2 + x 2 > 2 ⇔ m + 1 m − 2 > 0 m + 2 − 2 m + 1 > 0 2 m > 2 ⇔ 3 ≥ m > 2.
Đáp án C
Ta có y = x 2 x 2 − 2 x − m + x + 1 x 2 − 4 x − m − 1
Điều kiện đặt ra là mẫu có 2 nghiệm => Δ ' = 5 + m > 0 < = > m > − 5