Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Vì sinx-cosx+3>0 nên tập giá trị của hàm số là tập hợp các giá trị của y để phương trình (1-y)sinx+(y+1)cosx=(1+3y) có nghiệm.
Sử dụng điều kiện có nghiệm của phương trình A.sinx+B.cosx=C. Vậy m = -1 và M=1/7
Đáp án C
Đặt t = tan x 2 ta có: y = sin x + 2 cos x + 1 s i n x + cos x + 2
= 2 t 1 + t 2 + 2 1 − t 2 1 + t 2 + 1 2 t 1 + t 2 + 1 − t 2 1 + t 2 + 2 = − t 2 + 2 t + 3 t 2 + 2 t + 3
Tập các giá trị của y là tập các giá tri làm cho PT y = − t 2 + 2 t + 3 t 2 + 2 t + 3 ⇔ y + 1 t + 2 y − 1 t + 3 y − 1 = 0 có nghiệm với ẩn t
⇒ Δ ' = y − 1 2 − 3 y + 1 y − 1 = − 2 y 2 − 2 y + 4 ≥ 0 ⇒ − 2 ≤ y ≤ 1 ⇒ m = − 2 , M = 1
Đáp án A
Ta có: y = cos x + 2 sin x + 3 2 cos x − sin x + 4
⇒ y 2 cos x − sin x + 4 = cos x + 2 sin x + 3
⇔ 2 + y sin x + 1 − 2 y cos x = 4 y − 3 1
PT (1) có nghiệm ⇔ 2 + y 2 + 1 − 2 y 2 ≥ 4 y − 3 2
⇔ 11 y 2 − 24 y + 4 ≤ 0 ⇔ 2 11 ≤ y ≤ 2
Suy ra M = 2 m = 2 11 ⇒ M . m = 4 11
Đáp án C.
Ta có: f 2 x = 2 + sin x + cos x + 2 1 + sin x 1 + c o s x
= 2 + sin x + cos x + 2 1 + sin x + cos x + sin x cos x
Đặt t = sin x + cos x = 2 sin x + π 4 ⇒ t ∈ - 2 ; 2 .
Suy ra sin x cos x = t 2 - 1 2 ⇒ f 2 x = 2 + t + 2 1 + t + t 2 - 1 2 = 2 + t + 2 t 2 + 2 t + 1
⇒ f t = t + 2 + 2 t + 1 = t + 2 + 2 t + 1 k h i t ≥ - 1 t + 2 - 2 t + 1 k h i t < - 1 = 1 + 2 t + 2 + 2 k h i t ≥ - 1 1 - 2 t + 2 - 2 k h i t < - 1
Từ đó suy ra 1 ≤ f 2 x ≤ 4 + 2 2 ⇔ f x ≤ 4 + 2 2 ⇒ M - m = 4 + 2 2 - 1 .
Đáp án D
Ta có y = s inx + 2 cos x + 1 s inx + cos x + 2 ⇔ y − 1 s inx + y − 2 cos x = 1 − 2 y 1 .
PT (1) có nghiệm ⇔ y − 1 2 + y − 2 2 ≥ 1 − 2 y 2 ⇔ 2 y 2 + 2 y − 4 ≤ 0 ⇔ − 2 ≤ y ≤ 1 ⇒ M = 1.
Đáp án A.
Điều kiện x ∈ ℝ
y = cos x + cos x − π 3 = cos x + cos x . cos π 3 + sin x . sin π 3 = cos x + 1 2 cos x + 3 2 sin x
= 3 2 cos x + 3 2 sin x
Cách 1: y = 3 3 2 cos x + 1 2 sin x = 3 sin x + π 3 Suy ra − 3 ≤ y ≤ 3
Vậy m = − 3 ; M = 3 và do đó M 2 + m 2 = 6
Cách 2:
Áp dụng bất đẳng thức Bunyakovsky ta có:
3 2 cos x + 3 2 sin x 2 ≤ 3 2 2 + 3 2 2 cos x 2 + sin x 2
⇔ 3 2 cos x + 3 2 sin x 2 ≤ 3 ⇔ − 3 ≤ y ≤ 3
⇒ M = 3 khi 2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = 3
Tương tự ta có m = − 3 khi 2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = − 3
⇒ M 2 + m 2 = 3 2 + − 3 2 = 6
Vậy ta chọn A.