Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Đồng biến \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Nghịch biến \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)
\(b,\) PT giao Ox: \(y=0\Leftrightarrow\left(m-2\right)x=-\left(m+3\right)\Leftrightarrow x=\dfrac{m+3}{2-m}\Leftrightarrow A\left(\dfrac{m+3}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+3}{2-m}\right|\)
PT giao Oy: \(x=0\Leftrightarrow y=m+3\Leftrightarrow B\left(0;m+3\right)\Leftrightarrow OB=\left|m+3\right|\)
Theo đề: \(S_{OAB}=\dfrac{1}{2}OA\cdot OB=1\)
\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|\left|m+3\right|=2\\ \Leftrightarrow\dfrac{\left(m+3\right)^2}{\left|2-m\right|}=2\\ \Leftrightarrow2\left|2-m\right|=\left(m+3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}2\left(2-m\right)=\left(m+3\right)^2\left(m\le2\right)\\2\left(m-2\right)=\left(m+3\right)^2\left(m>2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2+8m+5=0\left(m\le2\right)\\m^2+4m+13=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=-4+\sqrt{11}\left(n\right)\\m=-4-\sqrt{11}\left(n\right)\end{matrix}\right.\)
Vậy ...
Để hàm số y=(m-2)x+4+m là hàm số bậc nhất thì \(m-2\ne0\)
hay \(m\ne2\)
a) Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì
Thay x=1 và y=2 vào hàm số y=(m-2)x+4+m, ta được
\(\left(m-2\right)\cdot1+4+m=2\)
\(\Leftrightarrow m-1+4+m=2\)
\(\Leftrightarrow2m+3=2\)
\(\Leftrightarrow2m=-1\)
hay \(m=-\dfrac{1}{2}\)(nhận)
Vậy: Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì \(m=-\dfrac{1}{2}\)
c) y = (m – 3)x + 2 (m ≠ 3)
Gọi A, B lần lượt là giao điểm của (d) và trục Ox, Oy và tam giác tạo thành là tam giác AOB vuông tại O
Để đồ thị hàm số tạo với 2 trục 1 tam giác \(\Rightarrow m\ne\left\{1;2\right\}\)
Gọi A và B lần lượt là giao điểm của ĐTHS với Ox và Oy
\(\Rightarrow A\left(-\dfrac{m-2}{m-1};0\right)\) ; \(B\left(0;m-2\right)\)
\(\Rightarrow OA=\left|-\dfrac{m-2}{m-1}\right|=\left|\dfrac{m-2}{m-1}\right|\) ; \(OB=\left|m-2\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Rightarrow OA.OB=4\)
\(\Leftrightarrow\left|\dfrac{m-2}{m-1}\right|.\left|m-2\right|=4\Leftrightarrow\left(m-2\right)^2=4\left|m-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2-4m+4=4\left(m-1\right)\\m^2-4m+4=-4\left(m-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2-8m+8=0\\m^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=4\pm2\sqrt{2}\\m=0\end{matrix}\right.\)
Nếu m = 4 => y = -5
Đường thẳng y = -5 song song với trục Ox , khi đó sẽ ko có tam giác
=> m = 4 (loại)
Do đó m \(\ne\)4
O y x A B
*Tại x = 0 thì y = -5
=> Giao điểm của đths y = ( 4 - m )x - 5 với trục Oy là điểm A(0;-5)
\(\Rightarrow OA=\sqrt{\left(0-0\right)^2+\left[0-\left(-5\right)\right]^2}=5\)
*Tại y = 0 thì \(x=\frac{5}{4-m}\)
=> giao điểm của đths y = (4 - m)x - 5 với trục Ox là điểm \(B\left(\frac{5}{4-m};0\right)\)
\(\Rightarrow OB=\sqrt{\left(0-\frac{5}{4-m}\right)^2+\left(0-0\right)^2}=\frac{5}{\left|4-m\right|}\)
Vì \(S_{AOB}=3\)mà tam giác này vuông tại O
\(\Rightarrow OA.OB=3\)
\(\Leftrightarrow5.\frac{5}{\left|4-m\right|}=3\)
\(\Leftrightarrow\frac{25}{\left|4-m\right|}=3\)
\(\Leftrightarrow\left|4-m\right|=\frac{25}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}4-m=\frac{25}{3}\\4-m=-\frac{25}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-\frac{13}{3}\\m=\frac{37}{3}\end{cases}}\left(TmĐK:m\ne4\right)\)
Vậy \(m\in\left\{-\frac{13}{3};\frac{37}{3}\right\}\)thỏa mãn bài toán
cho x=0=>y=m+3=>A(0;m+3)
cho y=0=>\(x=\dfrac{-m-3}{m-2}\)\(=>B\left(\dfrac{-m-3}{m-2};0\right)\)
vậy đồ thị hàm số trên là đường thẳng đi qua A(0,m+3) và B\(\left(\dfrac{-m-3}{m-2};0\right)\)
\(=>S\left(\Delta OAB\right)=1=\dfrac{OA.OB}{2}=\dfrac{\left(m+3\right)\left(\dfrac{-m-3}{m-2}\right)}{2}\)
\(=>m=..............\)(bạn tự tính)
Ohayo