Cho
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

Để hàm số (1) đồng biến trên \(ℝ\)thì \(m^2-9>0\)\(\Leftrightarrow m^2>9\)\(\Leftrightarrow\orbr{\begin{cases}m>3\\m< -3\end{cases}}\)

Để hàm số (1) nghịch biến trên \(ℝ\)thì \(m^2-9< 0\)\(\Leftrightarrow m^2< 9\)\(\Leftrightarrow-3< m< 3\)

3 tháng 3 2015

pn ơi phần tính tenta; bỏ bằng ko di na, mk đánh nhầm

17 tháng 12 2021

đố anh làm được đấy

17 tháng 12 2021

Đáp án :

\(x_0=^3\sqrt{38-17}\sqrt{5}+^3\sqrt{38+17}.\sqrt{5}\)

\(=x_0=38-17\sqrt{5}+38+17\sqrt{5}-3^3\sqrt{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right).x_0}\)

\(=76-3^3\sqrt{-1}.x_0=76+3x_0\)

\(=x_0^3\)\(-3x_0-76=0\)

\(=\left(x_0-4\right)\left(x_0^2+4x_0+19\right)=0\)

\(=x_0=4\)

Thay x0 = 4 vào phương trình x3 - 3x2 - 2x - 8 = 0 ta có đẳng thức đúng là:

    43 - 3.42 - 2.4 - 8 = 0

    Vậy x0 là nghiệm của phương trình x3 - 3x2 - 2x - 8 = 0

Cho hàm số y=f(x)y=f(x) xác định với mọi giá trị của xx thuộc \mathbb{R}R.Nếu giá trị của biến xx tăng lên mà giá trị tương ứng của f(x)f(x) cũng tăng lên thì hàm y=f(x)y=f(x) được gọi là hàm số  trên \mathbb{R}R.Nếu giá trị của biến xx tăng lên mà giá trị tương ứng của f(x)f(x) lại giảm đi thì hàm y=f(x)y=f(x) được gọi là hàm số  trên \mathbb{R}R.đồng biếnnghịch...
Đọc tiếp

Cho hàm số y=f(x)y=f(x) xác định với mọi giá trị của xx thuộc \mathbb{R}R.

Nếu giá trị của biến xx tăng lên mà giá trị tương ứng của f(x)f(x) cũng tăng lên thì hàm y=f(x)y=f(x) được gọi là hàm số  trên \mathbb{R}R.

Nếu giá trị của biến xx tăng lên mà giá trị tương ứng của f(x)f(x) lại giảm đi thì hàm y=f(x)y=f(x) được gọi là hàm số  trên \mathbb{R}R.

đồng biếnnghịch biến

(Kéo thả hoặc click vào để điền)

 
Câu hỏi 2 (0.25 điểm)

Hàm số y=-3x+9y=3x+9 là hàm đồng biến hay nghịch biến?

Đồng biến.
Nghịch biến.
Câu hỏi 3 (0.5 điểm)

Trong các hàm số sau đây, những hàm nào là hàm số bậc nhất?

y=5x + 5y=5x+5
y=6y=6
y = 10xy=10x
x=5x=5
 
Câu hỏi 4 (0.5 điểm)

Hàm số bậc nhất y=ax+by=ax+b (a\neq0)(a=0) xác định với mọi giá trị của xx thuộc \mathbb{R}R và có tính chất:

- Đồng biến trên \mathbb{R}R, khi .

- Nghịch biến trên \mathbb{R}R, khi .

a > 0a>0 a< 0a<0

(Kéo thả hoặc click vào để điền)

Câu hỏi 5 (1 điểm)

Cho hàm số bậc nhất: y=ax+6y=ax+6. Tìm hệ số aa, biết rằng khi x = 7x=7 thì y = 8y=8

Trả lời: a=a= 

 
.

 

 
Câu hỏi 6 (1 điểm)

Cho ba đường thẳng:

y=\dfrac{2}{5}x+\dfrac{1}{2}y=52x+21 \left(d_1\right)(d1);                     y=\dfrac{3}{5}x-\dfrac{5}{2}y=53x25  \left(d_2\right)(d2);                      y=kx+\dfrac{7}{2}y=kx+27  \left(d_3\right)(d3).

Tìm giá trị của kk sao cho ba đường thẳng đồng quy tại một điểm.

Trả lời: k=k=

 
.

 

Câu hỏi 7 (1 điểm)

α>>OAy = ax+bxyβT

Góc tạo bởi đường thẳng y = ax + b và trục hoành là góc nào?

α
β
β hoặc α
 
Câu hỏi 8 (1 điểm)

-1123456123456-1xyOAB

Góc tạo bởi đường thẳng d: y = -x +4d:y=x+4 với trục Ox bằng:

30o.
135o.
45o.
60o.
Câu hỏi 9 (1 điểm)

Điểm đối xứng với điểm M(-7 ; -2) qua trục Oy là điểm A'( ; ) 

 

 
Câu hỏi 10 (0.5 điểm)

Khoảng cách giữa hai điểm A_1\left(x_1,y_1\right)A1(x1,y1) và A_2\left(x_2,y_2\right)A2(x2,y2) là:

A_1A_2=\sqrt{\left(x_1+x_2\right)^2}+\sqrt{\left(y_1+y_2\right)^2}A1A2=(x1+x2)2+(y1+y2)2
A_1A_2=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}A1A2=(x1x2)2+(y1y2)2
A_1A_2=\sqrt{\left(x_1+x_2\right)^2+\left(y_1+y_2\right)^2}A1A2=(x1+x2)2+(y1+y2)2
A_1A_2=\sqrt{\left(x_1-x_2\right)^2}+\sqrt{\left(y_1-y_2\right)^2}A1A2=(x1x2)2+(y1y2)2
Câu hỏi 11 (1 điểm)
 Cách chứng minh nhiều điểm cùng nằm trên một đường tròn

Cho \Delta\text{ABC}ΔABC và M là trung điểm BC. Hạ MD, ME theo thứ tự vuông góc với AB và AC. Trên tia BD và CE lần lượt lấy các điểm I, K sao cho D là trung điểm của BI, E là trung điểm CK. Chứng minh rằng bốn điểm B, I, K, C cùng nằm trên một đường tròn.

Bài giải:

+) M thuộc trung trực BI nên  = MB = \dfrac{1}{2}21BC  ⇔  vuông tại I ⇔ I thuộc đường tròn đường kính . (1)

+) ME thuộc trung trực của CK nên   = MC = \dfrac{1}{2}21BC ⇔  vuông tại K ⇔ K thuộc đường tròn đường kính BC. (2)

Từ (1), (2) suy ra bốn điểm B, I, K, C cùng nằm trên đường đường kính BC.

ABCDIKEM
 \Delta\text{BCI}ΔBCI MIBC \Delta\text{BCK}ΔBCK  MK 

(Kéo thả hoặc click vào để điền)

 
Câu hỏi 12 (1 điểm)

Cho tam giác ABC vuông tại A, điểm D thuộc AB, điểm E thuộc AC. Gọi M, N, P, Q theo thứ tự là trung điểm của DE, DC, BC, BE. 

Chọn các khẳng định đúng.

MNPQ là hình chữ nhật.
M, N, P, Q cùng thuộc một đường tròn.
M, N, P, Q không cùng thuộc một đường tròn.
MNPQ là hình vuông.
Câu hỏi 13 (1 điểm)

Tứ giác ABCD không là hình chữ nhật có góc B và góc D vuông.

A, B, C, D cùng thuộc đường tròn đường kính ACBD.

AC <=> BD. help cần gấp

0
8 tháng 9 2021

Con cai nit 💓💖❣💌💌💤

DD
3 tháng 7 2021

Trong các hàm số trên, các hàm số bậc nhất là: 

\(y=25\left(x+5\right),y=\frac{10x+7}{9}\).

DD
9 tháng 10 2021

Để đồ thị hàm số \(y=\left(2m+2\right)x-5m\)song song với đường thẳng \(y=4x+1\)thì: 

\(\hept{\begin{cases}2m+2=4\\-5m\ne1\end{cases}}\Leftrightarrow m=1\).