K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2023

Thay \(m=0\) vào \(y=\left(m-1\right)x+m-3\) ta được hàm số \(y=\left(0-1\right)x+0-3=-x-3\)

Ta có đồ thị : 

20 tháng 5 2023

1) Hàm số đồng biến khi x > 0 và nghịch biến khi x < 0

Bảng giá trị:

Đồ thị:

2) Thay tọa độ điểm M(3; 9) vào (P) ta được:

\(9=3^2\) (đúng)

Vậy điểm M(3; 9) thuộc đồ thị (P)

30 tháng 10 2023

a) 

loading...  

b) Phương trình hoành độ giao điểm của hai đường thẳng đã cho:

-3x + 5 = 2x

⇔ 2x + 3x = 5

⇔ 5x = 5

⇔ x = 1 ⇒ y = 2.1 = 2

Vậy M(1; 2)

7 tháng 10 2023

a) \(y=\left(m-1\right)x-3\left(1\right)\)

\(A\left(2;1\right)\in\left(1\right)\Leftrightarrow\left(m-1\right).2-3=1\)

\(\Leftrightarrow2m-2-3=1\)

\(\Leftrightarrow2m=6\)

\(\Leftrightarrow m=3\)

\(\Rightarrow y=2x-3\)

b) Để \(\left(1\right)\) đồng biến

\(\Leftrightarrow m-1>0\)

\(\Leftrightarrow m>1\)

c) \(\left(1\right)\cap\left(Ox\right)=\left(2;0\right)\)

\(\Leftrightarrow\left(m-1\right).2-3=0\)

\(\Leftrightarrow2m-5=0\)

\(\Leftrightarrow m=\dfrac{5}{2}\)

d) \(\left(1\right)\cap\left(Oy\right)=\left(0;1\right)\)

\(\Leftrightarrow\left(m-1\right).0-3=1\)

\(\Leftrightarrow0m=4\left(vô.lý\right)\)

Vậy không có giá trị m nào thỏa mãn đề bài

7 tháng 10 2023

\(y=2x-3\)

loading...

5 tháng 9 2023

1) \(y=mx+1\left(m\ne0\right)\left(1\right)\) hay \(mx-y+1=0\)

Để đồ thị hàm số \(\left(1\right)\) đi qua điểm \(M\left(-1;-1\right)\) khi và chỉ khi

\(m.\left(-1\right)+1=-1\)

\(\Leftrightarrow-m=-2\)

\(\Leftrightarrow m=2\)

Vậy hàm số \(\left(1\right):y=2x+1\)

Bạn tự vẽ đồ thị nhé!

2) \(y=\left(m^2-2\right)x+2m+3\left(d\right)\)

Để \(\left(1\right)//\left(d\right)\) khi và chỉ khi

\(\left\{{}\begin{matrix}m^2-2=2\\2m+3\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\2m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-1\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\) thỏa đề bài

3) Khoảng cách từ gốc O đến đồ thị hàm số \(\left(1\right)\) là:

\(d\left(O;\left(1\right)\right)=\dfrac{m.0-0+1}{\sqrt[]{2^2+1^2}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow\dfrac{0.m+1}{\sqrt[]{5}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow0m=1\)

\(\Leftrightarrow m\in\varnothing\)

Vậy không có giá trị nào của m để thỏa mãn đề bài,

5 tháng 9 2023

Đáp án:

1. Tìm m để đồ thị hàm số (1) đi qua điểm M (−1;−1). Với m tìm được, vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy

Để đồ thị hàm số (1) đi qua điểm M (−1;−1), ta cần có m(−1)+1=−1. Từ đó ta có m=−2.

Với m=−2, đồ thị hàm số (1) là một đường thẳng có hệ số góc -2 và đi qua điểm M (−1;−1). Ta có thể vẽ đồ thị hàm số như sau:

[Image of the graph of y=-2x+1]

2. Tìm giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 =

Hai đường thẳng song song khi hệ số góc của chúng bằng nhau. Do đó, ta có m=m2−2. Từ đó ta có m=2.

3. Tìm m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5

Khoảng cách từ gốc O đến đồ thị hàm số (1) là khoảng cách từ điểm (0;1) đến đường thẳng y=mx+1. Khoảng cách này được tính theo công thức:

 

d=|m|

Do đó, ta có d=2552=2.

Từ đó, ta có m=2.

Kết luận:

  • Giá trị của m để đồ thị hàm số (1) đi qua điểm M (−1;−1) là m=-2.
  • Giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 = là m=2.
  • Giá trị của m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5 là m=2.

Lưu ý:

  • Để giải bài toán 1 và 2, ta có thể thay m=-2 vào hàm số (1) và so sánh với tọa độ của điểm M (−1;−1) hoặc tọa độ của một điểm bất kỳ trên đường thẳng y (m² - 2) x + 2m+3 =.
  • Để giải bài toán 3, ta có thể sử dụng công thức tính khoảng cách từ một điểm đến một đường thẳng.

chúc bạn học tốt

Tham khảo b

undefinedundefined

13 tháng 5 2022

nguồn đâu mà uy tín vậy =)) ?