Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.
Đáp án A
PT có hai nghiệm thực phân biệt ⇔ m - 1 < 0 m - 1 > 4 ⇔ m < 1 m > 5
Đáp án D
Từ bảng biến thiên ta thấy với m = 2 hoặc m ≤ 1 thì đồ thị hàm số y = f(x) cắt đường thẳng y = m tại 2 điểm phân biệt hay phương trình f(x) = m có 2 nghiệm phân biệt.
Đáp án C
Dựa vào bảng biến thiên của đồ thị hàm số ⇒ f ( x ) = 3 m có 3 nghiệm phân biệt khi và chỉ khi 3 m ≤ − 3 ⇔ m ≤ − 1
Đáp án B.
Đồ thị hàm số có 2 tiệm cận, 1 tiệm cận đứng, 1 tiệm cận ngang.
Phương trình f(x) = m có 3 nghiệm thực phân biệt thì m ∈ 1 ; 2 .
Phương án D bị gián đoạn bởi tập xác định.
Phương án C sai vì đồ thị hàm số có dáng điệu tiến đến vô cùng.