Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
- Hàm số g(x) = f(x) - x xác định và liên tục trên đoạn [a ; b].
- Suy ra: phương trình f(x) – x = 0 luôn có nghiệm trên khoảng (a, b).
a) Khi \(x\) càng gần đến 1 thì giá trị của hàm số càng gần đến 4.
b) Khi điểm \(H\) thay đổi gần về điểm \(\left( {1;0} \right)\) trên trục hoành thì điểm \(P\) càng gần đến điểm \(\left( {0;4} \right)\).
a) Đồ thị hàm số (hình bên).
Quan sát đồ thị nhận thấy :
+ f(x) liên tục trên các khoảng (-∞ ; -1) và (-1 ; ∞).
+ f(x) không liên tục tại x = -1.
⇒ không tồn tại giới hạn của f(x) tại x = -1.
⇒ Hàm số không liên tục tại x = -1.
Chọn A
· Bổ trợ kiến thức: Thường thì ở những bài toán như trên các em có thể suy luận được ngay c d mới có sự liên quan và quyết định đến việc hàm số y = f(x)có tuần hoàn hay không.
Tuy nhiên chỉ cần nhận ra được chiều thuận “y= f(x)=asincx+bcosdx là hàm số tuần hoàn => c d là số hữu tỉ” là các em đã thấy ngay được phương án đúng rồi, để chứng minh chiều ngược lại thì đó là điều không dễ dàng.
Các em ghi nhớ luôn nhé – để áp dụng vào các bài tập khác: “Cho a,b,c,d là các số thực khác 0 và hàm số y= f(x)=asincx+bcosdx, khi đó y= f(x)=asincx+bcosdxlà hàm số tuần hoàn khi và chỉ khi c d là số hữu tỉ”
Đáp án đúng : B