Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do y tỉ lệ nghịch vs x theo hẹ số a = 12
=> y = \(\frac{12}{x}\)
a) y = \(\frac{12}{x}\)
+) f(-12) = \(\frac{12}{-12}\) = -1
+) f(-4) = \(\frac{12}{-4}=-3\)
+) f(3) = \(\frac{12}{3}=4\)
+) f(6) = \(\frac{12}{6}=2\)
b)
f(x)=4
\(\Leftrightarrow\) 12:x =4
\(\Leftrightarrow\) x =3
f(x) =0
\(\frac{12}{0}\) ( x ko xác định )
c)
\(\frac{12}{x}=\frac{12}{-x}\)
\(\frac{12}{x}=-\frac{12}{x}=\frac{12}{-x}\)
=> f(-x) = -f(x)
vậy \(\forall x\in R\) thì f(-x ) = -f(x)
c) -f(x) = \(\frac{-12}{x}\) (1)
f(-x)=\(\frac{12}{-x}=\frac{-12}{x}\) (2)
từ (1) và (2) => -f(x) = f(-x)
* Với \(a=1\) ta thấy BĐT đúng.
* Ta xét khi \(a>1\)
Hàm nghi số \(y=\) \(y=\frac{1}{a^1}=\left(\frac{1}{a}\right)^1\) nghịch biến với \(\forall t\in R,\) khi \(a>1\).
Khi đó ta có
Ta có: \(\left(x-y\right)\left(\frac{1}{a^x}-\frac{1}{a^y}\right)\le0,\forall x,y\in R\Rightarrow\frac{x}{a^x}+\frac{y}{a^y}\le\frac{x}{a^y}+\frac{y}{a^x}\) (1)
Chứng minh tương tự \(\frac{y}{a^y}+\frac{z}{a^z}\le\frac{z}{a^y}+\frac{y}{a^z}\) (2) \(\frac{z}{a^z}+\frac{x}{a^x}\le\frac{x}{a^z}+\frac{z}{a^x}\) (3)
Cộng vế với vế (1), (2) và (3) ta được \(2\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{y+z}{a^x}+\frac{z+x}{a^y}+\frac{x+y}{a^z}\) (4)
Cộng 2 vế của (4) với biểu thức \(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\) ta được
\(3\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{x+y+z}{a^x}+\frac{x+y+z}{a^y}+\frac{x+y+z}{a^z}=\left(x+y+z\right)\left(\frac{1}{a^x}+\frac{1}{a^y}+\frac{1}{a^z}\right)\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=3k\)
\(z=5k\)
Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=27\)
\(k^3=3^3\)
\(\Rightarrow k=3\)
\(\Rightarrow x=2k=2.3=6\)
\(y=3k=3.3=9\)
\(z=5k=5.3=15\)
Vậy \(x=6;y=9;z=15\)
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
=> \(x=2k+1\)
\(y=3k+2\)
\(z=4k+3\)
Thay \(x=2k+1;y=3k+2;z=4k+3\) vào \(2x+3y-z=50\) ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-4\left(4k+3\right)=50\)
\(4k+2+9k+6-4k-3=50\)
\(9k+5=50\)
\(9k=45\)
\(k=5\)
\(\Rightarrow x=2k+1=2.5+1=11\)
\(y=3k+2=3.5+2=17\)
\(z=4k+3=4.5+3=23\)
Vậy \(x=11;y=17;z=23\)
a) Ta có:
128 = (122)4 = 1444
812 = (83)4 = 5124
Vì 1444 < 5124
=> 128 < 812
b) (-5)39 = -539 =-(53)13 = -12513
(-2)91 = -291 = -(27)13 = -12813
Vì -12513 > -12813
=> (-5)39 > (-2)91
Ta có a.(a+b+c)+b.(a+b+c)+c.(a+b+c)=1/144
=>ta sử dụng phép phân phối có a+b+c chung
=>(a+b+c)(a+b+c)=1/144
=>a+b+c=1/12
từ đó tính a,b,c lần lượt là -1/2;3/4;-1/6
cậu toàn chép sai đề bài à nếu là c.(a+b+c)=-1/72 mới tính được
a) Ta có: y = f(x) = 5 - 2x
+) f(0) => y = 5 - 2 . 0 = 5
+) f(-3) => y = 5 - 2 . (-3) = 5 - (-6) = 11
+) f(\(\frac{1}{4}\)) => y = 5 - 2 . \(\frac{1}{4}\) = \(5-\frac{1}{2}\) = 4,5
b)
+) Khi y = 5 => 5 = 5 - 2x
=> 2x = 5 - 5 = 0
=> x = 0
+) Khi y = 3 => 3 = 5 - 2x
=> 2x = 2
=> x = 1
+) Khi y = -1 => -1 = 5 - 2x
=> 2x = 6
=> x = 3
a) f(0)=5-2.0=5
f(-3)=5-2.(-3)=5-(-6)=5+6=11
f(1/4)=5-2.1/4=5-1/2=4/1/2