Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(-x\right)=-\dfrac{3}{4}\left(-x\right)^2+12=-\dfrac{3}{4}x^2+12=f\left(x\right)\)
a) Ta có: \(y=f\left(x\right)=4x^2-5\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(3\right)=4.3^2-5=31\\f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2-5=-4\end{matrix}\right.\)
b) Ta có: \(f\left(x\right)=-1\)
\(\Rightarrow4x^2-5=-1\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{1;-1\right\}\) thì \(f\left(x\right)=-1\)
c) \(\forall x\in R,f\left(x\right)=f\left(-x\right)\Leftrightarrow f\left(-x\right)=4.\left(-x\right)^2-5=4x^2-5=f\left(x\right)\)
Vậy \(\forall x\in R\) thì \(f\left(x\right)=f\left(-x\right)\)
\(a.f\left(3\right)=4.3^2-5=31.\\ f\left(\dfrac{-1}{2}\right)=4.\left(\dfrac{-1}{2}\right)^2-5=-4.\)
\(b.f\left(x\right)=-1.\Rightarrow4x^2-5=-1.\\ \Leftrightarrow4x^2=4.\Leftrightarrow x^2=1.\\ \Leftrightarrow x=\pm1.\)
\(c.f\left(x\right)=f\left(-x\right).\\ \Rightarrow4x^2-5=4\left(-x\right)^2-5.\\ \Leftrightarrow4x^2-5=4x^2-5.\)
\(\Leftrightarrow0x=0\) (luôn đúng).
Vậy với mọi x ∈ R thì f (x)= f (-x).
Lời giải:
$f(x_1)-f(x_2)=2018mx_1-2018mx_2=2018m(x_1-x_2)$
$=f(x_1-x_2)$ (đpcm)
$f(kx)=2018m(kx)=k.2018mx=kf(x)$ (đpcm)
a) Ta có : \(f\left(x_1+x_2\right)=a\left(x_1+x_2\right)=ax_1+ax_2=f\left(x_1\right)+f\left(x_2\right)\)
b) Ta có : \(f\left(kx\right)=a\cdot k\cdot x=k\cdot ax=k\cdot f\left(x\right)\)
a, f(1)=1+1+2
f(căn bậc 2)=2+1=3
b,A(a;2) suy ra x=a,y=2
suy ra 2=ma.suy ra m=2/a
a) f(3) = 4.3^2 - 5 = 31
b) f(x) = -1
<=> 4x^2 - 5 = -1
<=> 4x^2 = 4
<=> x = 1 hoặc x = -1
c) f(x) = 4x^2 - 5 = 4(-x)^2 - 5 = f(-x)
ta có:f(x)=4x2-5
f(-x)=4(-x)2-5=4x2-5
=> f(x)=f(-x)