Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
Theo đề , ta có : \(y=f\left(x\right)=4x^2-5\)
\(\Rightarrow\)
\(f\left(3\right)=4.\left(3\right)^2-5=31\)
\(f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)
\(b.\)
Ta có : \(f\left(x\right)=-1\)
\(\Rightarrow4x^2-5=-1\)
\(\Rightarrow4x^2=-1+5=4\)
\(\Rightarrow x^2=4:4=1\)
\(\Rightarrow x=\sqrt{1}=1\)
\(c.\)
Ta có :
\(f\left(x\right)=4x^2-5\)
\(\Rightarrow f\left(x\right)=4.\left(x\right)^2-5\) \(\left(1\right)\)
\(f\left(-x\right)=4.\left(-x\right)^2-5=4.\left(x\right)^2-5\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow f\left(x\right)=f\left(-x\right)\)
a) \(f\left(\frac{-1}{2}\right)\)
Thay x = -1/2 vào ta được: \(y=f\left(\frac{-1}{2}\right)=\left(\frac{-1}{2}\right)^2-5.\left(\frac{-1}{2}\right)+1=\frac{15}{4}\)
\(f\left(3\right)\)
Thay x = 3 vào ta được: \(y=f\left(3\right)=3^2-5.3+1=-5\)
b) Để f(x) = 1
Suy ra: \(x^2-5x+1=1\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy khi x = 0 hoặc x = 5 thì f(x) = 1
Ta có : \(y=f\left(x\right)=2x^2-3x+1\)
\(f\left(-1\right)=2\left(-1\right)^2-3.\left(-1\right)+1=2.1-\left(-3\right)+1=2+3+1=6\)
\(f\left(2\right)=2.2^2-3.2+1=2.4-6+1=8-6+1=3\)
\(f\left(\frac{-1}{2}\right)=2\left(\frac{1}{2}\right)^2-3.\frac{1}{2}+1=2.\frac{1}{4}-\frac{3}{2}+1=\frac{1}{2}-\frac{3}{2}+\frac{2}{2}=0\)
Bài 1:
\(a)f\left(x\right)=10x\)
\(\Leftrightarrow f\left(0\right)=10.0=0\)
\(\Leftrightarrow f\left(-1\right)=10\left(-1\right)=-10\)
\(\Leftrightarrow f\left(\frac{1}{2}\right)=\frac{10}{2}=5\)
\(b)\)Vì \(f\left(x\right)=10x\)
Nên: \(f\left(a+b\right)=10\left(a+b\right)\)
Và: \(f\left(a\right)+f\left(b\right)=10a+10b=10\left(a+b\right)\)
Do đó:
\(f\left(a+b\right)=f\left(a\right)+f\left(b\right)\left(đpcm\right)\)
\(c)\)Vì \(\hept{\begin{cases}f\left(x\right)=10x\\f\left(x\right)=x^2\end{cases}\Leftrightarrow x^2=10x}\)
\(\Leftrightarrow x^2-10x=0\)
\(\Leftrightarrow x\left(x-10\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x=0\\x=10\end{cases}}\)thì \(f\left(x\right)=x^2\)
\(\text{1)}\)
\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)
\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)
\(f\left(3\right)=3^2-5\)
\(\text{2)}\)
\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)
\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)
\(\text{3)}\)
\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)
\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)
\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)
\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)
\(y=f\left(\frac{1}{2}\right)=3.\left(\frac{1}{2}\right)^2+1=\frac{7}{4}\)
\(y=f\left(1\right)=3.1^2+1=4\)
\(y=f\left(3\right)=3.3^2+1=28\)