Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt hoành độ giao điểm:
\(\sqrt{2x^2-2x-m}-x-1=0\)
\(\Leftrightarrow\sqrt{2x^2-2x-m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2-2x-m=x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x-1=m\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 2 nghiệm pb \(x\ge-1\)
Từ đồ thị hàm \(y=x^2-4x-1\) ta thấy \(-5< m\le4\)
Phương trình hoành độ giao điểm là:
\(x^2+3x+m=0\)
\(\text{Δ}=3^2-4\cdot1\cdot m=9-4m\)
Để đồ thị hàm số \(y=x^2+3x+m\) cắt trục hoành tại 2 điểm phân biệt thì Δ>0
=>9-4m>0
=>-4m>-9
=>\(m< \dfrac{9}{4}\)
A) Để đồ thị đi qua điểm M(-1, 1) thì thay x = -1, y = 1 vào hàm số ta có:
1 = (2m-1).(-1) + m + 1
=> m = 1
B) Hàm số đã cho là hàm bậc nhất, đồ thị là đường thẳng nên không thể đồ thị cắt trục hoành tại hai điểm được
a)y=(2m-1)x+m+1
Đồ thị hàm số đi qua điểm M(-1;1) khi và chỉ khi
1=(2m-1)(-1)+m+1
Giải phương trình ẩn m, tìm được: m=1
b)y=(2m-1)x+m+1
Cho x=0⇒y=m+1⇒A(0; m+1 ) ⇒OA =\(\left|m+1\right|\)
Cho y =0 ⇒x =\(\frac{-m-1}{2m-1}\Rightarrow B\left(\frac{-m-1}{2m-1};0\right)\)
\(\Rightarrow OB=\left|\frac{-m-1}{2m-1}\right|=\frac{\left|m+1\right|}{\left|2m-1\right|}\)
△AOB cân ⇔\(\left\{{}\begin{matrix}OA=OB\\OA>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|m+1\right|=\frac{\left|m+1\right|}{\left|2m-1\right|}\\\left|m+1\right|>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|2m-1\right|=1\\m\ne-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
Vậy với m = 0 hoặc m = 1 thì đồ thị hàm số thỏa mãn yêu cầu của bài toán
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
Phương trình hoành độ giao điểm của (P ) và trục hoành:
x2+ 3x+m=0 (1)
+ Để đồ thị cắt trục hoành tại hai điểm phân biệt khi phương trình (1) có hai nghiệm phân biệt
Chọn D.
D sai, vì hệ số góc $a=1>0$, khi $x$ tăng (giảm) thì $y$ tương ứng tăng (giảm) nên hàm đồng biến trên $R$
a/ Giao điểm với trục tung: thay \(x=0\)
\(\Rightarrow y=\frac{m}{-m}\)
Để đồ thị ko cắt Oy \(\Rightarrow\)y ko tồn tại \(\Leftrightarrow m=0\)
b/ Giao điểm với trục hoành: \(y=0\)
\(\Rightarrow\frac{x^2-mx+m}{x-m}=0\) vô nghiệm
- TH1: \(x^2-mx+m=0\) vô nghiệm
\(\Leftrightarrow\Delta=m^2-4m< 0\Rightarrow0< m< 4\)
TH2: \(x^2-mx+m=0\) có nghiệm \(x=m\)
\(\Leftrightarrow m^2-m^2+m=0\Rightarrow m=0\)
Vậy \(0\le m< 4\)
c/ Từ câu trên ta có \(m^2-4m>0\Rightarrow\left[{}\begin{matrix}m>4\\m< 0\end{matrix}\right.\)
Bạn giải thích câu c cho mình với