K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2

Hàm đã cho là hàm bậc nhất khi:

\(\left\{{}\begin{matrix}m^2-m=0\\m\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)

23 tháng 12 2023

Câu 5:

a: Khi m=3 thì \(f\left(x\right)=\left(2\cdot3+1\right)x-3=7x-3\)

\(f\left(-3\right)=7\cdot\left(-3\right)-3=-21-3=-24\)

\(f\left(0\right)=7\cdot0-3=-3\)

b: Thay x=2 và y=3 vào f(x)=(2m+1)x-3, ta được:

\(2\left(2m+1\right)-3=3\)

=>2(2m+1)=6

=>2m+1=3

=>2m=2

=>m=1

c: Thay m=1 vào hàm số, ta được:

\(y=\left(2\cdot1+1\right)x-3=3x-3\)

*Vẽ đồ thị

loading...

d: Để hàm số y=(2m+1)x-3 là hàm số bậc nhất thì \(2m+1\ne0\)

=>\(2m\ne-1\)

=>\(m\ne-\dfrac{1}{2}\)

e: Để đồ thị hàm số y=(2m+1)x-3 song song với đường thẳng y=5x+1 thì \(\left\{{}\begin{matrix}2m+1=5\\-3\ne1\end{matrix}\right.\)

=>2m+1=5

=>2m=4

=>m=2

a: Để hàm số (1) là hàm số bậc nhất thì \(m^2+m-2< >0\)

=>\(m^2+2m-m-2< >0\)

=>\(\left(m+2\right)\left(m-1\right)< >0\)

=>\(\left\{{}\begin{matrix}m+2< >0\\m-1< >0\end{matrix}\right.\Leftrightarrow m\notin\left\{-2;1\right\}\)

Để hàm số nghịch biến thì (m+2)(m-1)<0

TH1: \(\left\{{}\begin{matrix}m+2>0\\m-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-2\\m< 1\end{matrix}\right.\)

=>-2<m<1

TH2: \(\left\{{}\begin{matrix}m+2< 0\\m-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)

=>Loại

b: Để hàm số (1) là hàm hằng thì \(m^2+m-2=0\)

=>(m+2)(m-1)=0

=>\(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

5 tháng 11 2023

a) Để hàm số đã cho là hàm số bậc nhất thì:

3m + 5 ≠ 0

⇔ 3m ≠ -5

⇔ m ≠ -5/3

b) Để hàm số đã cho là hàm số bậc nhất thì:

2m² + 3 ≠ 0

⇔2m² ≠ -3 (luôn đúng)

Vậy m ∈ R

c) Để hàm số đã cho là hàm số bậc nhất thì:

m² - 3m = 0 và 3 - m ≠ 0

*) m² - 3m = 0

⇔ m(m - 3) = 0

⇔ m = 0 hoặc m - 3 = 0

**) m - 3 = 0

⇔ m = 3

*) 3 - m ≠ 0

⇔ m ≠ 3

Vậy m = 0 thì hàm số đã cho là hàm số bậc nhất

a: Để đây là hàm số bậc nhất thì 3m+5<>0

=>3m<>-5

=>\(m< >-\dfrac{5}{3}\)

b: Để đây là hàm số bậc nhất thì \(2m^2+3\ne0\)

mà \(2m^2+3>=3>0\forall m\)

nên \(m\in R\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-3m=0\\3-m< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-3\right)=0\\m< >3\end{matrix}\right.\Leftrightarrow m=0\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:
a. Để hs trên là hàm bậc nhất thì:

$4m2-4m+1\neq 0$

$\Leftrightarrow (2m-1)^2\neq 0$

$\Leftrightarrow 2m-1\neq 0$

$\Leftrightarrow m\neq \frac{1}{2}$

b.

$f(1)=(4m^2-4m+1).1-3=4m^2-4m-2=6$

$\Leftrightarrow 4m^2-4m-8=0$

$\Leftrightarrow m^2-m-2=0$

$\Leftrightarrow (m+1)(m-2)=0$

$\Leftrightarrow m=-1$ hoặc $m=2$

 

a: Phương trình hoành độ giao điểm là:

x-7=-2x-1

=>x+2x=-1+7

=>3x=6

=>x=2

Thay x=2 vào y=x-7, ta được:

y=2-7=-5

=>A(2;-5)

b: Thay x=2 và y=-5 vào y=mx+1, ta được:

\(m\cdot2+1=-5\)

=>2m=-6

=>m=-3

26 tháng 1

a: Phương trình hoành độ giao điểm là:

x-7=-2x-1

=>x+2x=-1+7

=>3x=6

=>x=2

Thay x=2 vào y=x-7, ta được:

y=2-7=-5

=>A(2;-5)

b: Thay x=2 và y=-5 vào y=mx+1, ta được:

m⋅2+1=−5

=>2m=-6

=>m=-3

24 tháng 12 2023

Sửa đề: \(y=mx^2+x\left(m-1\right)+2\)

Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m=0\\m-1\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=0\\m\ne1\end{matrix}\right.\)

=>m=0

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

21 tháng 9 2021

\(f\left(x\right)⋮g\left(x\right)\Leftrightarrow3x^2-mx-2=\left(x-m\right)\cdot a\left(x\right)\)

Thay \(x=m\)

\(\Leftrightarrow3m^2-m^2-2=0\\ \Leftrightarrow2m^2=2\Leftrightarrow m^2=1\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

14 tháng 12 2023

a: Thay x=1 và y=4 vào y=mx+1, ta được:

\(m\cdot1+1=4\)

=>m+1=4

=>m=3

b: Để hai đường thẳng này song song với nhau thì

\(\left\{{}\begin{matrix}m^2=m\\m\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2-m=0\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne1\end{matrix}\right.\)

=>m=0

14 tháng 12 2023

thanks nha

13 tháng 11 2023

F(2)+F(1)=8

=>\(2^2\left(m^2+1\right)+2\left(m^2+1\right)-5+m^2+1+2\left(m^2+1\right)-5=8\)

=>\(8\left(m^2+1\right)+m^2+1-10=8\)

=>\(9\left(m^2+1\right)=18\)

=>\(m^2+1=2\)

=>\(m^2=1\)

=>\(\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)