Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = 0.
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm
x
0
∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho
x
0
∈ (a;b) và f(
x
0
)>f(x),∀x ∈ (a,b)∖{
x
0
}.
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm xo∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho xo∈ (a;b) và f(xo)>f(x),∀x ∈ (a,b)∖{xo}.
Hình ảnh trên là một phần đồ thị của y trên tập xác định. Ta thấy rằng hàm số đạt cực đại tại x = 2 nhưng không chắc rằng có còn điểm cực đại nào khác trên những khoảng rộng hơn hay không (I) sai, (III) đúng.
Hàm số không xác định tại x = 1 nên không thể đạt cực tiểu tại điểm này =>(II) sai.
Chọn B
Đáp án A
Phương pháp: Hàm số đạt cực tiểu tại điểm x = x 0 ⇔ y ' x 0 = 0 và qua x 0 thì y' đổi dấu từ âm sáng dương.
Cách giải: Dựa vào BBT ta dễ thấy x = 0 là điểm cực tiểu của hàm số y = f (x ).
Chú ý và sai lầm: Hàm số đạt cực tiểu tại x = 0, rất nhiều học sinh kết luận sai hàm số đạt cực tiểu tại x = 1. Phân biệt điểm cực tiểu và giá trị cực tiểu của hàm số.