K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Chọn C

 Dựa vào đồ thị của hàm số y=  f’(x) ta thấy:

+ f’(x) > 0  khi x ∈ (-2;1) ∪ (1; + ∞)

 => Hàm số y= f(x)  đồng biến trên các khoảng  ( -2; 1) và ( 1; + ∞).

 Suy ra A đúng, B đúng.

+ Ta  thấy : f’(x)< 0 khi x< -2   ( chú ý nhận dạng đồ thị của hàm số  bậc ba)

=>  Hàm số y= f( x) nghịch biến trên khoảng ( - ∞; -2) .

 Suy ra D đúng.

+ Dùng phương pháp loại trừ, ta chọn C

20 tháng 2 2019

Chọn C 

Trên  đoạn [ - 1; 1] đồ thị hàm số y= f’( x)  nằm phía trên trục hoành.

=> Trên  đoạn [ - 1; 1] thì f’( x) > 0.

=> Trên  đoạn [ - 1; 1] thì  hàm số y= f( x) đồng biến

28 tháng 9 2019

22 tháng 10 2017

Dựa vào đồ thị hàm số ta thấy: f’(x) = 0 khi và chỉ khi x= 1; 

Ta có bảng biến thiên :

Dựa vào bảng biến thiên ta thấy f(x) < 0 với mọi x≠ ± 2

Xét hàm số y= ( f( x) ) 2 có đạo hàm y’ = 2f(x). f’ (x)

Bảng xét dấu:

Chọn D.

 

31 tháng 12 2017

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

6 tháng 11 2019

13 tháng 9 2019

Chọn C

Ta có: 

Dựa vào đồ thị:

Dựa vào đồ thị, ta cũng có: 

Từ (1),(2) suy ra a + c > 4a + c > 0.

28 tháng 6 2019

9 tháng 9 2018