K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)

10 tháng 12 2017

mk sửa có dấu phẩy sau các chứ f trên đấu bài nha.

giúp mk đi mn

10 tháng 12 2017

@Nguyễn Huy Tú

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$

hay $x\in (1;2)$

Đáp án D

1 tháng 12 2018

a) f(-\(\dfrac{1}{2}\))= - \(\dfrac{1}{2}\)+1=\(\dfrac{1}{2}\)

f(0)=0+1=1

f(-1)=-1+1=0

b) f(x)=0 <=> x+1=0 <=>x=-1

f(x)=2 <=> x+1=2 <=>x=1

c) với điểm A(\(\dfrac{3}{4}\);\(\dfrac{-1}{2}\)) thay vào hàm số ta có -2*\(\dfrac{3}{4}\)+1=\(\dfrac{-1}{2}\)=\(\dfrac{-1}{2}\)

=> điểm A có thuộc đồ thị hàm số trên

làm tương tự vs các điểm còn lại nha bạn !

9 tháng 8 2018

a) ta có : \(D=R\backslash\left\{0\right\}\) \(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3}{\left|-x\right|+4\left(-x\right)^2}=\dfrac{x^4+3}{\left|x\right|+4x^2}=f\left(x\right)\)

\(\Rightarrow\) hàm số này là hàm chẳn.

b) ta có : \(D=R\backslash\left\{\pm1\right\}\) \(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{3\left(-x\right)^4-\left(-x\right)^2+5}{\left|-x\right|^5-1}=\dfrac{3x^4-x^2+5}{\left|x\right|^5-1}=f\left(x\right)\)

\(\Rightarrow\) hàm số này là hàm chẳn .

c) ta có : \(D=\left(-\infty;-3\right)\cup\left(3;+\infty\right)\) \(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{1}{\sqrt{\left(-x\right)^2-9}}=\dfrac{1}{\sqrt{x^2-9}}=f\left(x\right)\)

\(\Rightarrow\) hàm số này là hàm chẳn.

d) ta có : \(D=R\) \(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{-x}{\left|-5x+2\right|+\left|-5x-2\right|}=\dfrac{-x}{\left|5x-2\right|+\left|5x+2\right|}=-f\left(x\right)\)

\(\Rightarrow\) hàm số này là hàm lẽ .

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Lời giải:

\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)

Suy ra khẳng định $a$ đúng