K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2020

\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{1+x}-2+2-\sqrt[3]{8-x}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{2x}{\sqrt{1+x}+1}+\frac{x}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\frac{2}{\sqrt{1+x}+1}+\frac{1}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}\right)=\frac{2}{2}+\frac{1}{4+4+4}=\frac{13}{12}\)

28 tháng 2 2020
https://i.imgur.com/v6W1QWU.jpg
28 tháng 2 2020

ai giup voi

NV
1 tháng 4 2020

\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\frac{8x^{2016}-24x^{2015}}{x^{2017}+2x^{2016}-15x^{2015}}=\lim\limits_{x\rightarrow3}\frac{8\left(x-3\right)}{x^2+2x-15}=\lim\limits_{x\rightarrow3}\frac{8\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}=\lim\limits_{x\rightarrow3}\frac{8}{x+5}=1\)

\(\lim\limits_{x\rightarrow1}g\left(x\right)=\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+2}-2+2-\sqrt{3x+1}}{m\left(x-1\right)\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{\frac{2\left(x-1\right)}{\sqrt{2x+2}+2}-\frac{3\left(x-1\right)}{2+\sqrt{3x+1}}}{m\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{2}{\sqrt{2x+2}+2}-\frac{3}{2+\sqrt{3x+1}}}{m\left(x+1\right)}=\frac{\frac{2}{4}-\frac{3}{4}}{2m}=-\frac{1}{8m}\)

\(\Rightarrow-\frac{1}{8m}=1\Rightarrow m=-\frac{1}{8}\)

NV
27 tháng 2 2020

Bạn tự hiểu là giới hạn tiến đến đâu nhé, làm biếng gõ đủ công thức

a. \(\frac{\sqrt{1+x}-1+1-\sqrt[3]{1+x}}{x}=\frac{\frac{x}{\sqrt{1+x}+1}-\frac{x}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}}{x}=\frac{1}{\sqrt{1+x}+1}-\frac{1}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

b.

\(\frac{1-x^3-1+x}{\left(1-x\right)^2\left(1+x+x^2\right)}=\frac{x\left(1-x\right)\left(1+x\right)}{\left(1-x\right)^2\left(1+x+x^2\right)}=\frac{x\left(1+x\right)}{\left(1-x\right)\left(1+x+x^2\right)}=\frac{2}{0}=\infty\)

c.

\(=\frac{-2}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{\left(2x+1\right)^2}+\sqrt[3]{\left(2x-1\right)\left(2x+1\right)}}=\frac{-2}{\infty}=0\)

d.

\(=x\sqrt[3]{3-\frac{1}{x^3}}-x\sqrt{1+\frac{2}{x^2}}=x\left(\sqrt[3]{3-\frac{1}{x^3}}-\sqrt{1+\frac{2}{x^2}}\right)=-\infty\)

e.

\(=\frac{2x^2-8x+8}{\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x-3\right)}=\frac{2\left(x-2\right)^2}{\left(x-1\right)\left(x-3\right)\left(x-2\right)^2}=\frac{2}{\left(x-1\right)\left(x-3\right)}=\frac{2}{-1}=-2\)

f.

\(=\frac{2x}{x\sqrt{4+x}}=\frac{2}{\sqrt{4+x}}=1\)

28 tháng 2 2020

cậu giúp mình bài mình mới đăng đc ko ạ

1, \(\lim\limits_{x\rightarrow1}\frac{2x^2-3x+1}{x^3-x^2-x+1}\) 2, \(\lim\limits_{x\rightarrow2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}\) 3, \(\lim\limits_{x\rightarrow0}\frac{1-\sqrt[3]{x-1}}{x}\) 4, \(\lim\limits_{x\rightarrow-\infty}\frac{x^2-5x+1}{x^2-2}\) 5, \(\lim\limits_{x\rightarrow+\infty}\frac{2x^2-4}{x^3+3x^2-9}\) 6, \(\lim\limits_{x\rightarrow2^-}\frac{2x-1}{x-2}\) 7, \(\lim\limits_{x\rightarrow3^+}\frac{8+x-x^2}{x-3}\) 8, ...
Đọc tiếp

1, \(\lim\limits_{x\rightarrow1}\frac{2x^2-3x+1}{x^3-x^2-x+1}\)

2, \(\lim\limits_{x\rightarrow2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}\)

3, \(\lim\limits_{x\rightarrow0}\frac{1-\sqrt[3]{x-1}}{x}\)

4, \(\lim\limits_{x\rightarrow-\infty}\frac{x^2-5x+1}{x^2-2}\)

5, \(\lim\limits_{x\rightarrow+\infty}\frac{2x^2-4}{x^3+3x^2-9}\)

6, \(\lim\limits_{x\rightarrow2^-}\frac{2x-1}{x-2}\)

7, \(\lim\limits_{x\rightarrow3^+}\frac{8+x-x^2}{x-3}\)

8, \(\lim\limits_{x\rightarrow-\infty}\left(8+4x-x^3\right)\)

9, \(\lim\limits_{x\rightarrow-1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}\)

10, \(\lim\limits_{x\rightarrow-\infty}\frac{\left(2x^2+1\right)^2\left(5x+3\right)}{\left(2x^3-1\right)\left(x+1\right)^2}\)

11, \(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x}}{x+3}\)

12, \(\lim\limits_{x\rightarrow1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)

13, \(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{x+1}+\sqrt{x+4}-3}{x}\)

14, \(\lim\limits_{x\rightarrow0}\frac{\left(x^2+2020\right)\sqrt{1+3x}-2020}{x}\)

15, \(\lim\limits_{x\rightarrow+\infty}\left(2x-\sqrt{4x^2-3}\right)\)

16, \(\lim\limits_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^3-a^3}\)

17, \(\lim\limits_{x\rightarrow1}\frac{x^n-nx+n-1}{\left(x-1\right)^2}\)

18, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2-2x}{8-x^3}\\\frac{x^4-16}{x-2}\end{matrix}\right.\) khi x>2,khi x<2 tại x=2

9
AH
Akai Haruma
Giáo viên
12 tháng 3 2020

Bài 2:

\(\lim\limits_{x\to 2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}=\lim\limits_{x\to 2}\frac{x^2-x-2}{(x+\sqrt{x+2}).\frac{4x+1-9}{\sqrt{4x+1}+3}}=\lim\limits_{x\to 2}\frac{(x-2)(x+1)(\sqrt{4x+1}+3)}{(x+\sqrt{x+2}).4(x-2)}=\lim\limits_{x\to 2}\frac{(x+1)(\sqrt{4x+1}+3)}{4(x+\sqrt{x+2})}=\frac{9}{8}\)

Bài 3:

\(\lim\limits_{x\to 0-}\frac{1-\sqrt[3]{x-1}}{x}=-\infty \)

\(\lim\limits_{x\to 0+}\frac{1-\sqrt[3]{x-1}}{x}=+\infty \)

Bài 4:

\(\lim\limits_{x\to -\infty}\frac{x^2-5x+1}{x^2-2}=\lim\limits_{x\to -\infty}\frac{1-\frac{5}{x}+\frac{1}{x^2}}{1-\frac{2}{x^2}}=1\)

Bài 5:

\(\lim\limits_{x\to +\infty}\frac{2x^2-4}{x^3+3x^2-9}=\lim\limits_{x\to +\infty}\frac{\frac{2}{x}-\frac{4}{x^3}}{1+\frac{3}{x}-\frac{9}{x^3}}=0\)

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

Bài 6:

\(\lim\limits_{x\to 2- }\frac{2x-1}{x-2}=\lim\limits_{x\to 2-}\frac{2(x-2)+3}{x-2}=\lim\limits_{x\to 2-}\left(2+\frac{3}{x-2}\right)=-\infty \)

Bài 7:

\(\lim\limits _{x\to 3+ }\frac{8+x-x^2}{x-3}=\lim\limits _{x\to 3+}\frac{1}{x-3}.\lim\limits _{x\to 3+}(8+x-x^2)=2(+\infty)=+\infty \)

Bài 8:

\(\lim\limits _{x\to -\infty}(8+4x-x^3)=\lim\limits _{x\to -\infty}(-x^3)=+\infty \)

Bài 9:

\(\lim\limits _{x\to -1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{x^2+3-4}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{(x-1)(x+1)}\)

\(\lim\limits _{x\to -1}\frac{\sqrt{x^2+3}+2}{(\sqrt[3]{x^2}-\sqrt[3]{x}+1)(x-1)}=\frac{-2}{3}\)

Câu 1 : Cho hàm số f (x) = \(-x^3+3mx^2-12x+3\) với m là tham số . Số giá trị nguyên của m \(\in\left[-1;5\right]\) để f' (x) \(\le0\) với mọi x \(\in\) R A. 3 B. 4 C. 6 D. 5 Câu 2 : Cho hàm số f(x) = \(\frac{mx+10}{2x+m}\) với m là tham số thực . Số giá trị nguyên của m để f' (x) < 0 , \(\forall x\in\left(0;2\right)\) là A. 5 B. 4 C. 6 ...
Đọc tiếp

Câu 1 : Cho hàm số f (x) = \(-x^3+3mx^2-12x+3\) với m là tham số . Số giá trị nguyên của m \(\in\left[-1;5\right]\) để f' (x) \(\le0\) với mọi x \(\in\) R

A. 3 B. 4 C. 6 D. 5

Câu 2 : Cho hàm số f(x) = \(\frac{mx+10}{2x+m}\) với m là tham số thực . Số giá trị nguyên của m để f' (x) < 0 , \(\forall x\in\left(0;2\right)\)

A. 5 B. 4 C. 6 D. 3

Câu 3 : Cho hàm số \(y=\frac{2x}{x+1}\) có đồ thị (C) . Phương trình tiếp tuyến của (C) song song với đường thẳng \(\left(\Delta\right)\) : x - 2y + 1 = 0 là

A. y = x + 9 B. y = \(\frac{1}{2}x+\frac{9}{2}\) C. y = x - 9 D. y = \(\frac{1}{2}x-\frac{9}{2}\)

Câu 4 : Biết lim \(\frac{\sqrt{2n^2+1}-3n}{n+2}=\sqrt{a}-b\) . Tính a + b

A. 5 B. -3 C. -1 D. 2

Câu 5 : Tìm lim \(\frac{2x^2-\left(a+1\right)x-a^2+a}{x^2-a^2}\left(x\rightarrow a\right)\) theo a

A. \(\frac{3a+1}{2a}\) B. \(\frac{a-1}{2a}\) C. \(\frac{3a-1}{2a}\) D. \(\frac{3a-1}{2}\)

giải chi tiết từng câu giúp mình với ạ

2
NV
1 tháng 7 2020

3.

\(x-2y+1=0\Leftrightarrow y=\frac{1}{2}x+\frac{1}{2}\)

\(y'=\frac{2}{\left(x+1\right)^2}\Rightarrow\frac{2}{\left(x+1\right)^2}=\frac{1}{2}\)

\(\Rightarrow\left(x+1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-3\Rightarrow y=3\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}y=\frac{1}{2}\left(x-1\right)+1\\y=\frac{1}{2}\left(x+3\right)+3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}x+\frac{1}{2}\left(l\right)\\y=\frac{1}{2}x+\frac{9}{2}\end{matrix}\right.\)

4.

\(\lim\limits\frac{\sqrt{2n^2+1}-3n}{n+2}=\lim\limits\frac{\sqrt{2+\frac{1}{n^2}}-3}{1+\frac{2}{n}}=\sqrt{2}-3\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)

5.

\(\lim\limits_{x\rightarrow a}\frac{2\left(x^2-a^2\right)+a\left(a+1\right)-\left(a+1\right)x}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+2a\right)-\left(a+1\right)\left(x-a\right)}{\left(x-a\right)\left(x+a\right)}\)

\(=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+a-1\right)}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{2x+a-1}{x+a}=\frac{3a-1}{2a}\)

NV
1 tháng 7 2020

1.

\(f'\left(x\right)=-3x^2+6mx-12=3\left(-x^2+2mx-4\right)=3g\left(x\right)\)

Để \(f'\left(x\right)\le0\) \(\forall x\in R\) \(\Leftrightarrow g\left(x\right)\le0;\forall x\in R\)

\(\Leftrightarrow\Delta'=m^2-4\le0\Rightarrow-2\le m\le2\)

\(\Rightarrow m=\left\{-1;0;1;2\right\}\)

2.

\(f'\left(x\right)=\frac{m^2-20}{\left(2x+m\right)^2}\)

Để \(f'\left(x\right)< 0;\forall x\in\left(0;2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-20< 0\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{20}< m< \sqrt{20}\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{1;2;3;4\right\}\)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 thì f(x) thỏa mãn được tất cả các điều kiện đã nêu