Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
Đồ thị hàm số y = x + x 2 + x + 1 x có 1 tiệm cận đứng là x = 0
Mặt khác lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0 nên đồ thị hàm số có 2 tiệm cận ngang
Xét hàm số y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2 suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng
Chọn D.
Phương pháp: Sử dụng định nghĩa tiệm cận đứng.
Cách giải: Để đồ thị hàm số đã cho có tiệm cận đứng và tiệm cận ngang thì
Chọn đáp án C
thì đồ thị hàm số y = a x + 1 b x - 2 có hai đường tiệm cận:
Đường tiệm cận đứng là x = 2 b và đường tiệm cận ngang là y = a b
Từ giả thiết bài toán ta có:
Chọn đáp án D
Phương pháp
+) Đường thẳng x=a được gọi là TCĐ của đồ thị hàm số y = f ( x ) ⇔ lim x → a f ( x ) = ∞ .
+) Đường thẳng y=b được gọi là TCN của đồ thị hàm số y = f ( x ) ⇔ lim x → ± ∞ f ( x ) = b
Đáp án D