Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x+3>0
hay x>-3
b: \(\Leftrightarrow-\left(x-2\right)^2\left(x+2\right)>0\)
=>x+2<0
hay x<-2
c: =>x+4>0
hay x>-4
d: =>-3<x<4
NX: /a+c-42/>= 0 với mọi x
/b+a-22/>= 0 với mọi x
/b+c-40/>= 0 với mọi x
=> /a+c-42/+/b+a-22/+/b+c-40/>= 0 với mọi x
mà theo đề bài /a+c-42/+/b+a-22/+/b+c-40/<hoặc=0
=> /a+c-42/=0
=> a+c=42(1)
/b+a-22/=0
=>a+b=22 (2)
/b+c-40/=0
=>b+c=40 (3)
Từ (1)(2)(3)=> a+b+b+c+a+c=104
=> a+b+c=52(4)
từ(1) và (4)=> b=10
từ(2)và(4)=>c=30
từ(3)và(4)=>a=12
Vậy a=12 ; b=10;c=30
TA CÓ:
= 1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+.....+\(\frac{1}{49^2}\)+\(\frac{1}{50^2}\)<1+ \(\frac{1}{1\times2}\)+\(\frac{1}{2\times3}\)+....+\(\frac{1}{49\times50}\)
= 1+ 1- \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + ..... + \(\frac{1}{49}\) - \(\frac{1}{50}\)
= 1+ 1 - \(\frac{1}{50}\)
= 1+ \(\frac{49}{50}\) < 2
Chứng tỏ A < 2
c, |x+2|<5
=>|x+2|=5
=>x+2=+5
TH1:
x+2=5
x=5-2
x=3
TH2:
x+2=-5
x=-5-2
x=-7
Vay :x=3 hoặc -7
d, |x-1|>2
mk ko bt dg ko nên ko lm
a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)
b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)
c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)
d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)
\(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)
a,
4x - 7 > 0
↔ 4x > 7
↔ x > \(\dfrac{7}{4}\)
Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }
b,
-5x + 8 > 0
↔ 8 > 5x
↔ \(\dfrac{8}{5}\) > x
Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }
c,
9x - 10 ≤ 0
↔ 9x ≤ 10
↔ x ≤ \(\dfrac{10}{9}\)
Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }
d,
( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10
↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10
↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x
↔ -5 ≤ 5x
↔ -1 ≤ x
Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}
vì |a| là một số tự nhiên với mọi a ∈ Z nên từ |a| < 5 ta có:
=> |a| = {0,1,2,3,4}.
Nghĩa là a ={0,1,-1,2,-2,3,-3,4,-4}. Biểu diễn trên trục số cácc số này đều lớn hơn -5 và nhỏ hơn 5 do
đó -5<a<5.
vì /a/ là một số tự nhiên với mọi a ∈ Z nên từ /a/ < 5 ta có:
=> /a/ = {0,1,2,3,4}.
Nghĩa là a ={0,1,-1,2,-2,3,-3,4,-4}. Biểu diễn trên trục số cácc số này đều lớn hơn -5 và nhỏ hơn 5 do
đó -5<a<5.
*/a/ là giá trị tuyệt đối nha>>>
Đáp án A