Cho hàm số  y = a x +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Ta có : \(y'=\frac{x^2-2x}{\left(x-1\right)^2}\)

Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm của tiếp tuyến d với (C)

\(d:y=\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{x_0^2-x_0+1}{x_0-1}\)

a) Vì d song song với đường thẳng \(\Delta:y=\frac{3}{4}x+\frac{1}{4}\) nên ta có :

\(\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}=\frac{3}{4}\Leftrightarrow x_0^2-2_0x-3=0\Leftrightarrow x_0=-1;x_0=3\)

\(x_0=-1\) phương trình tiếp tuyến : \(y=\frac{3}{4}x-\frac{3}{4}\)

\(x_0=3\) phương trình tiếp tuyến : \(y=\frac{3}{4}x+\frac{5}{4}\)

b) Đường thẳng \(\Delta_m\) có hệ số góc \(k_m=\frac{1}{m}\)

Số tiếp tuyến thỏa mãn bài toán chính là số nghiệm của phương trình :

\(y'.k_m=-1\Leftrightarrow\frac{m\left(x^2-2x\right)}{\left(x-1\right)^2}=-1\)

                   \(\Leftrightarrow\left(m+1\right)x^2-2\left(m+1\right)x+1=0\left(1\right)\)

* Nếu m = - 1 suy ra (1) vô nghiệm, suy ra không có tiếp tuyến nào

* Nếu \(m\ne-1\), suy ra (1) có \(\Delta'=m\left(m+1\right)\) và (1) có nghiệm \(x=1\Leftrightarrow m=0\)

             + Khi \(\left[\begin{array}{nghiempt}m>0\\m< -1\end{array}\right.\) suy ra (*) có 2 nghiệm phân biệt nên có 2 tiếp tuyến

             + Khi \(-1< m\le0\) thì (*) vô nghiệm nên không có tiếp tuyến nào

 
29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

29 tháng 4 2016

Ta có \(y'=-4x^3-2x\)

a) Vì tiếp tuyến vuông góc với đường thẳng \(d:y=\frac{1}{6}x-\frac{1}{6}\)

Suy ra \(y'\left(x_0\right)=-6\Leftrightarrow2x_0^3+x_0^2-3=0\Leftrightarrow x_0=1\Rightarrow y_0=-3\)

Phương trình tiếp tuyến là \(y=-6x+3\)

 

b) Vì tuyến tuyến song song với đường thẳng \(y=6x+2\) nên ta có :

\(y'\left(x_0\right)=6\Leftrightarrow2x_0^3+x_0^2+3=0\Leftrightarrow\left(x_0+1\right)\left(2x_0^2-2x_0+3\right)=0\Rightarrow x_0=-1\Rightarrow y_0=-3\)

Nên ta có phương trình tiếp tuyến là :

                     \(y=6\left(x+1\right)-3=6x+3\)

13 tháng 10 2021

2x mũ 3 cộng x ũ 2 cộng 3 bằng 0 là ban lấy ở đâu đó ạ mình không hiểu

 

 
AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 1:

\(y=x^3-3x^2-2\Rightarrow y'=3x^2-6x\)

Gọi hoành độ của M là \(x_M\)

Hệ số góc của tiếp tuyến của đồ thị (C) tại M bằng 9 tương đương với:

\(f'(x_M)=3x_M^2-6x_M=9\)

\(\Leftrightarrow x_M=3\) hoặc $x_M=-1$

\(\Rightarrow y_M=-2\) hoặc \(y_M=-6\)

Vậy tiếp điểm có tọa độ (3;-2) hoặc (-1;-6)

Đáp án B

Câu 2:

Gọi hoành độ tiếp điểm là $x_0$

Hệ số góc của tiếp tuyến tại tiếp điểm là:

\(f'(x_0)=x_0^2-4x_0+3\)

Vì tt song song với \(y=3x-\frac{20}{3}\Rightarrow f'(x_0)=3\)

\(\Leftrightarrow x_0^2-4x_0+3=3\Leftrightarrow x_0=0; 4\)

Khi đó: PTTT là:

\(\left[{}\begin{matrix}y=3\left(x-0\right)+f\left(0\right)=3x+4\\y=3\left(x-4\right)+f\left(4\right)=3x-\dfrac{20}{3}\end{matrix}\right.\) (đt 2 loại vì trùng )

Do đó \(y=3x+4\Rightarrow \) đáp án A

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 3:

PT hoành độ giao điểm:

\(\frac{2x+1}{x-1}-(-x+m)=0\)

\(\Leftrightarrow x^2+(1-m)x+(m+1)=0\) (1)

Để 2 ĐTHS cắt nhau tại hai điểm pb thì (1) phải có hai nghiệm phân biệt

\(\Leftrightarrow \Delta=(1-m)^2-4(m+1)> 0\)

\(\Leftrightarrow m^2-6m-3> 0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 3-2\sqrt{3}\\m>3+2\sqrt{3}\end{matrix}\right.\)

Kết hợp với m nguyên và \(m\in (0;10)\Rightarrow m=7;8;9\)

Có 3 giá trị m thỏa mãn.

8 tháng 4 2016

Ta có \(M\left(-1;-2\right)\)

Phương trình của (C) tại M là \(\Delta:y=y'\left(-1\right)\left(x+1\right)-2\)

                                     hay \(\Delta:y=9x+7\)

\(\Delta\) // d \(\Leftrightarrow\begin{cases}m^2+5=9\\3m+1\ne7\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm2\\m\ne2\end{cases}\) \(\Leftrightarrow m=-2\)

 

NV
29 tháng 9 2020

a/

\(y'=-\frac{4}{\left(x-2\right)^2}\Rightarrow\left\{{}\begin{matrix}y'\left(3\right)=-4\\y\left(3\right)=6\end{matrix}\right.\)

Pt tiếp tuyến: \(y=-4\left(x-3\right)+6\Leftrightarrow y=-4x+18\)

b.

\(y'=\frac{-5}{\left(x-1\right)^2}\)

Tiếp tuyến song song với \(y=-5x-3\) nên có hệ số góc \(k=-5\)

\(\Rightarrow\frac{-5}{\left(x-1\right)^2}=-5\Rightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn

NV
15 tháng 6 2019

Câu 1:

\(f'\left(1\right)=g'\left(1\right)=k\)

\(h\left(x\right)=\frac{f\left(x\right)+2}{g\left(x\right)+1}\Rightarrow h'\left(x\right)=\frac{f'\left(x\right)\left[g\left(x\right)+1\right]-g'\left(x\right)\left[f\left(x\right)+2\right]}{\left[g\left(x\right)+1\right]^2}\)

\(\Rightarrow h'\left(1\right)=\frac{k\left(b+1\right)-k\left(a+2\right)}{\left(b+1\right)^2}=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\)

\(h'\left(1\right)=k\Rightarrow k=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\Rightarrow\frac{b-a-1}{\left(b+1\right)^2}=1\)

\(\Leftrightarrow b-a-1=\left(b+1\right)^2\Rightarrow a=b-1-\left(b+1\right)^2\)

\(\Rightarrow a=-b^2-b-2\)

NV
15 tháng 6 2019

Câu 2:

\(y=f\left(x\right)=\frac{x+1}{x-2}\Rightarrow f'\left(x\right)=\frac{-3}{\left(x-2\right)^2}\)

Phương trình hoành độ giao điểm:

\(\frac{x+1}{x-2}=x+m\Leftrightarrow x+1=\left(x+m\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+\left(m-3\right)x-2m-1=0\)

\(\Delta=\left(m-3\right)^2+4\left(2m+1\right)=\left(m+1\right)^2+12>0\)

\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt A và B có hoành độ giả sử là a và b

Theo Viet: \(\left\{{}\begin{matrix}a+b=3-m\\ab=-3m-1\end{matrix}\right.\) \(\Rightarrow3a+3b-ab=10\) (1)

Mặt khác do tiếp tuyến tại A và B song song

\(\Leftrightarrow\frac{-3}{\left(a-2\right)^2}=\frac{-3}{\left(b-2\right)^2}\Leftrightarrow\left[{}\begin{matrix}a-2=b-2\\a-2=2-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4-b\end{matrix}\right.\)

TH1: \(a=b\) thay vào (1):

\(\Rightarrow-a^2+6a-10=0\left(vn\right)\)

TH2: \(a=4-b\)

\(\Rightarrow a+b=4\Rightarrow3-m=4\Rightarrow m=-1\)