K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

+ Ta có đạo hàm :  y’ = 3.( 4- x2)2. ( 4-x2)’= -6x( 4-x2)2

+ đạo hàm cấp 2:

 y’’= -6( 4-x2)2- 6x.2( 4-x2). ( -2x) = - 6.( 4-x2) .[ ( 4-x2) + 2x. ( -2x)]

      = -6( 4-x2) .[ 4-x2- 4x2] = - 6( 4-x2). ( 4- 5x2)

Do đó; y’ (1) = -6( 4- 12).( 4- 5.12) = -6. 3.( -1)= 18

Chọn A.

10 tháng 7 2017

a) TXĐ: R

y′ = 6x − 24 x 2  = 6x(1 − 4x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0; 1/4) , suy ra y đồng biến trên khoảng (0; 1/4)

y' < 0 trên các khoảng ( - ∞ ; 0 ); (14; + ∞ ), suy ra y nghịch biến trên các khoảng ( - ∞ ;0 ); (14; + ∞ )

b) TXĐ: R

y′ = 16 + 4x − 16 x 2  − 4 x 3  = −4(x + 4)( x 2  − 1)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số y đã cho đồng biến trên các khoảng ( - ∞ ; -4) và (-1; 1), nghịch biến trên các khoảng (-4; -1) và (1; + ∞ )

c) TXĐ: R

y′ = 3 x 2 − 12x + 9

y' = 0

y' > 0 trên các khoảng ( - ∞ ; 1), (3;  + ∞ ) nên y đồng biến trên các khoảng ( - ∞ ; 1), (3;  + ∞ )

y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)

d) TXĐ: R

y′ = 4 x 3  + 16 = 4x( x 2  + 4)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0;  + ∞ ) ⇒ y đồng biến trên khoảng (0;  + ∞ )

y' < 0 trên khoảng ( - ∞ ; 0) ⇒ y nghịch biến trên khoảng ( - ∞ ; 0)

 
13 tháng 10 2017

Đáp án: D.

Vì  x 2  + x + 4 > 0 với mọi x nên phương trình (x − 3)( x 2  + x + 4) = 0 chỉ có một nghiệm là x = 3. Do đó, đồ thị của hàm số đã cho chỉ có một giao điểm với trục hoành.

4 tháng 10 2019

Đáp án: D.

Vì  x 2  + x + 4 > 0 với mọi x nên phương trình (x − 3)( x 2  + x + 4) = 0 chỉ có một nghiệm là x = 3. Do đó, đồ thị của hàm số đã cho chỉ có một giao điểm với trục hoành.

30 tháng 5 2022

1D

2A

3A

4D

5C

 

30 tháng 5 2022

1.D

2.A

3.A

4.D

5.C

7 tháng 10 2019

Đáp án: D.

Hàm số y = x 4  - 5 x 2  + 4 xác định trên R.

y' = 4 x 3  - 10x = 2x(2 x 5  - 5);

y' = 0 khi


y'' = 12 x 2  - 10

Vì y''(0) = -10 < 0,

nên hàm số chỉ có một cực đại (tại x = 0)

Cách khác: Vì a > 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có một cực đại

30 tháng 9 2019

Đáp án: D.

Hàm số y =  x 4  - 5 x 2  + 4 xác định trên R.

y' = 4 x 3  - 10x = 2x(2 x 2  - 5);

y' = 0 khi

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y'' = 12 x 2  - 10

Vì y''(0) = -10 < 0,Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên hàm số chỉ có một cực đại (tại x = 0)

Cách khác: Vì a > 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có một cực đại

15 tháng 7 2018

Đáp án: C.

y = -3 là tiệm cận ngang của đồ thị hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 12 2017

Đáp án: B.

Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có hai cực đại, một cực tiểu.

Ở đây y' = -4 x 3 + 8x; y' = 0 ⇔ -4x( x 2  - 2) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

25 tháng 11 2018

Đáp án: B.

Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có hai cực đại, một cực tiểu.

Ở đây y' = -4 x 3  + 8x; y' = 0 ⇔ -4x( x 2  - 2) = 0

 

 Giải sách bài tập Toán 12 | Giải sbt Toán 12