K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trước hết, ta vẽ đồ thị (C) của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

TXĐ: D = R \ {−3/2}.

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

với mọi nên hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tiệm cận đứng x = −3/2

Tiệm cận ngang y = −1/2

Đồ thị (C) đi qua các điểm (−2;−6),(−1;5),(0;4/3),(4;0)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Để vẽ đồ thị (C’) của hàm số , ta giữ nguyên phần đồ thị (C) nằm phía trên trục hoành và lấy đối xứng phần đồ thị (C) nằm phía dưới trục hoành qua trục hoành.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

NV
20 tháng 8 2021

\(y'=2f'\left(x\right).f'\left(f\left(x\right)\right)-2f'\left(x\right).f\left(x\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f'\left(f\left(x\right)\right)=f\left(x\right)\end{matrix}\right.\)

Từ đồ thị ta có \(f'\left(x\right)=0\Rightarrow x=x_1\) với \(-4< x_1< 0\)

Xét phương trình \(f'\left(f\left(x\right)\right)=f\left(x\right)\), đặt \(f\left(x\right)=t\Rightarrow f'\left(t\right)=t\)

Vẽ đường thẳng \(y=t\) (màu đỏ) lên cùng đồ thị \(y=f'\left(t\right)\) như hình vẽ:

undefined

Ta thấy 2 đồ thị cắt nhau tại 3 điểm: \(t=\left\{-4;1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}f\left(x\right)=-4\\f\left(x\right)=1\\f\left(x\right)=4\end{matrix}\right.\) (1)

Mặt khác từ đồ thị \(f'\left(x\right)\) và \(f\left(0\right)=-4\) ta được BBT của \(f\left(x\right)\) có dạng:

undefined

Từ đó ta thấy các đường thẳng \(y=k\ge-4\) luôn cắt \(y=f\left(x\right)\) tại 2 điểm phân biệt

\(\Rightarrow\) Hệ (1) có 6 nghiệm phân biệt (trong đó 3 nghiệm nhỏ hơn \(x_1\) và 3 nghiệm lớn hơn \(x_1\))

Từ đó ta có dấu của y' như sau:

undefined

Có 3 lần y' đổi dấu từ dương sang âm nên hàm có 3 cực đại

Chọn A

6 tháng 7 2018



1 tháng 6 2017

Đáp án B

(1) là phương trình hoành độ giao điểm của đồ thị f'(t)  và đường thẳng d : y = -t (hình vẽ)

Dựa vào đồ thị của f'(t) và đường thẳng y =-t ta có

25 tháng 6 2019

Hình như gặp ở đâu rồi:

31 tháng 8 2019

Chọn B

Ta có:

biến thiên của hàm số f(x) trên đoạn [0;4]

Nhìn vào bảng biến thiên ta thấy 

Ta có f(2) + f(4) = f(3) + f(0)  ⇔ f(0) - f(4) = f(2) - f(3) > 0.

Suy ra: f(4) < f(0). Do đó 

Vậy giá trị nhỏ nhất và lớn nhất của f(x) trên đoạn [0;4] lần lượt là: f(4), f(2).

24 tháng 7 2019